SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Coe Bradley P.) "

Sökning: WFRF:(Coe Bradley P.)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • 2021
  • swepub:Mat__t
  •  
2.
  • Kanai, M, et al. (författare)
  • 2023
  • swepub:Mat__t
  •  
3.
  • Diego, J. M., et al. (författare)
  • JWST's PEARLS : A new lens model for ACT-CL J0102-4915, "El Gordo," and the first red supergiant star at cosmological distances discovered by JWST
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 672
  • Tidskriftsartikel (refereegranskat)abstract
    • The first James Webb Space Telescope (JWST) data on the massive colliding cluster El Gordo allow for 23 known families of multiply lensed images to be confirmed and for eight new members of these families to be identified. Based on these families, which have been confirmed spectroscopically by MUSE, we derived an initial lens model. This model guided the identification of 37 additional families of multiply lensed galaxies, among which 28 are entirely new systems, and nine were previously known. The initial lens model determined geometric redshifts for the 37 new systems. The geometric redshifts agree reasonably well with spectroscopic or photometric redshifts when those are available. The geometric redshifts enable two additional models that include all 60 families of multiply lensed galaxies spanning a redshift range 2 z z > 0.8 and has an estimated virial mass close the maximum mass allowed by standard cosmological models. The JWST images also reveal the presence of small-mass perturbers that produce small lensing distortions. The smallest of these is consistent with being a dwarf galaxy at z = 0.87 and has an estimated mass of 3.8 x 10(9) M-circle dot, making it the smallest substructure found at z > 0.5. The JWST images also show several candidate caustic-crossing events. One of them is detected at high significance at the expected position of the critical curve and is likely a red supergiant star at z = 2.1878. This would be the first red supergiant found at cosmological distances. The cluster lensing should magnify background objects at z > 6, making more of them visible than in blank fields of a similar size, but there appears to be a deficiency of such objects.
  •  
4.
  • Windhorst, Rogier A., et al. (författare)
  • JWST PEARLS. Prime extragalactic areas for reionization and lensing science : project overview and first results
  • 2023
  • Ingår i: Astronomical Journal. - : Institute of Physics (IOP). - 0004-6256 .- 1538-3881. ; 165:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We give an overview and describe the rationale, methods, and first results from NIRCam images of the JWST “Prime Extragalactic Areas for Reionization and Lensing Science” (PEARLS) project. PEARLS uses up to eight NIRCam filters to survey several prime extragalactic survey areas: two fields at the North Ecliptic Pole (NEP); seven gravitationally lensing clusters; two high redshift protoclusters; and the iconic backlit VV 191 galaxy system to map its dust attenuation. PEARLS also includes NIRISS spectra for one of the NEP fields and NIRSpec spectra of two high-redshift quasars. The main goal of PEARLS is to study the epoch of galaxy assembly, active galactic nucleus (AGN) growth, and First Light. Five fields—the JWST NEP Time-Domain Field (TDF), IRAC Dark Field, and three lensing clusters—will be observed in up to four epochs over a year. The cadence and sensitivity of the imaging data are ideally suited to find faint variable objects such as weak AGN, high-redshift supernovae, and cluster caustic transits. Both NEP fields have sightlines through our Galaxy, providing significant numbers of very faint brown dwarfs whose proper motions can be studied. Observations from the first spoke in the NEP TDF are public. This paper presents our first PEARLS observations, their NIRCam data reduction and analysis, our first object catalogs, the 0.9–4.5 μm galaxy counts and Integrated Galaxy Light. We assess the JWST sky brightness in 13 NIRCam filters, yielding our first constraints to diffuse light at 0.9–4.5 μm. PEARLS is designed to be of lasting benefit to the community.
  •  
5.
  • Caputi, K. I., et al. (författare)
  • ALMA Lensing Cluster Survey: An ALMA Galaxy Signposting a MUSE Galaxy Group at z=4.3 Behind "El Gordo"
  • 2021
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 908:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery of a Multi Unit Spectroscopic Explorer (MUSE) galaxy group at z = 4.32 lensed by the massive galaxy cluster ACT-CL J0102-4915 (aka El Gordo) at z = 0.87, associated with a 1.2 mm source that is at a 2.07 0.88 kpc projected distance from one of the group galaxies. Three images of the whole system appear in the image plane. The 1.2 mm source has been detected within the Atacama Large Millimetre/submillimetre Array (ALMA) Lensing Cluster Survey (ALCS). As this ALMA source is undetected at wavelengths lambda < 2 mu m, its redshift cannot be independently determined, however, the three lensing components indicate that it belongs to the same galaxy group at z = 4.32. The four members of the MUSE galaxy group have low to intermediate stellar masses (similar to 10(7)-10(10) M) and star formation rates (SFRs) of 0.4-24 M yr(-1), resulting in high specific SFRs (sSFRs) for two of them, which suggest that these galaxies are growing fast (with stellar mass doubling times of only similar to 2 x 10(7) yr). This high incidence of starburst galaxies is likely a consequence of interactions within the galaxy group, which is compact and has high velocity dispersion. Based on the magnification-corrected sub-/millimeter continuum flux density and estimated stellar mass, we infer that the ALMA source is classified as an ordinary ultra-luminous infrared galaxy (with associated dust-obscured SFR similar to 200-300 M yr(-1)) and lies on the star formation main sequence. This reported case of an ALMA/MUSE group association suggests that some presumably isolated ALMA sources are in fact signposts of richer star-forming environments at high redshifts.
  •  
6.
  • Furtak, Lukas J., et al. (författare)
  • A variable active galactic nucleus at z = 2.06 triply-imaged by the galaxy cluster MACS J0035.4−2015
  • 2023
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 522:4, s. 5142-5151
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery of a triply imaged active galactic nucleus (AGN), lensed by the galaxy cluster MACS J0035.4−2015 (z d = 0.352). The object is detected in Hubble Space Telescope imaging taken for the RELICS program. It appears to have a quasi-stellar nucleus consistent with a point-source, with a de-magnified radius of re ≲ 100 pc. The object is spectroscopically confirmed to be an AGN at z spec = 2.063 ± 0.005 showing broad rest-frame UV emission lines, and detected in both X-ray observations with Chandra and in ALCS ALMA band 6 (1.2 mm) imaging. It has a relatively faint rest-frame UV luminosity for a quasar-like object, MUV, 1450 = −19.7 ± 0.2. The object adds to just a few quasars or other X-ray sources known to be multiply lensed by a galaxy cluster. Some diffuse emission from the host galaxy is faintly seen around the nucleus, and there is a faint object nearby sharing the same multiple-imaging symmetry and geometric redshift, possibly an interacting galaxy or a star-forming knot in the host. We present an accompanying lens model, calculate the magnifications and time delays, and infer the physical properties of the source. We find the rest-frame UV continuum and emission lines to be dominated by the AGN, and the optical emission to be dominated by the host galaxy of modest stellar mass M✶ ≃ 109.2 M⊙. We also observe some variation in the AGN emission with time, which may suggest that the AGN used to be more active. This object adds a low-redshift counterpart to several relatively faint AGN recently uncovered at high redshifts with HST and JWST.
  •  
7.
  • Helsmoortel, Celine, et al. (författare)
  • A SWI/SNF-related autism syndrome caused by de novo mutations in ADNP
  • 2014
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 46:4, s. 380-
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite the high heritability of autism spectrum disorders (ASD), characterized by persistent deficits in social communication and interaction and restricted, repetitive patterns of behavior, interests or activities(1), a genetic diagnosis can be established in only a minority of patients. Known genetic causes include chromosomal aberrations, such as the duplication of the 15q11-13 region, and monogenic causes, as in Rett and fragile- X syndromes. The genetic heterogeneity within ASD is striking, with even the most frequent causes responsible for only 1% of cases at the most. Even with the recent developments in nextgeneration sequencing, for the large majority of cases no molecular diagnosis can be established(2-7). Here, we report ten patients with ASD and other shared clinical characteristics, including intellectual disability and facial dysmorphisms caused by a mutation in ADNP, a transcription factor involved in the SWI/ SNF remodeling complex. We estimate this gene to be mutated in at least 0.17% of ASD cases, making it one of the most frequent ASD- associated genes known to date.
  •  
8.
  • Hsiao, Tiger Yu-Yang, et al. (författare)
  • JWST Reveals a Possible z similar to 11 Galaxy Merger in Triply Lensed MACS0647-JD
  • 2023
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 949:2
  • Tidskriftsartikel (refereegranskat)abstract
    • MACS0647-JD is a triply lensed z similar to 11 galaxy originally discovered with the Hubble Space Telescope. The three lensed images are magnified by factors of similar to 8, 5, and 2 to AB mag 25.1, 25.6, and 26.6 at 3.5 mu m. The brightest is over a magnitude brighter than other galaxies recently discovered at similar redshifts z > 10 with JWST. Here, we report new JWST imaging that clearly resolves MACS0647-JD as having two components that are either merging galaxies or stellar complexes within a single galaxy. The brighter larger component "A" is intrinsically very blue (ss similar to-2.6 +/- 0.1), likely due to very recent star formation and no dust, and is spatially extended with an effective radius similar to 70 +/- 24 pc. The smaller component "B" (r similar to 20-+ 58 pc) appears redder (ss similar to-2 +/- 0.2), likely because it is older (100-200 Myr) with mild dust extinction (AV similar to 0.1 mag). With an estimated stellar mass ratio of roughly 2:1 and physical projected separation similar to 400 pc, we may be witnessing a galaxy merger 430 million years after the Big Bang. We identify galaxies with similar colors in a high-redshift simulation, finding their star formation histories to be dissimilar, which is also suggested by the spectral energy distribution fitting, suggesting they formed further apart. We also identify a candidate companion galaxy "C" similar to 3 kpc away, likely destined to merge with A and B. Upcoming JWST Near Infrared Spectrograph observations planned for 2023 January will deliver spectroscopic redshifts and more physical properties for these tiny magnified distant galaxies observed in the early universe.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy