SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Cognat E) "

Sökning: WFRF:(Cognat E)

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dumurgier, J., et al. (författare)
  • A Pragmatic, Data-Driven Method to Determine Cutoffs for CSF Biomarkers of Alzheimer Disease Based on Validation Against PET Imaging
  • 2022
  • Ingår i: Neurology. - : Ovid Technologies (Wolters Kluwer Health). - 0028-3878 .- 1526-632X. ; 99:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and Objectives To elaborate a new algorithm to establish a standardized method to define cutoffs for CSF biomarkers of Alzheimer disease (AD) by validating the algorithm against CSF classification derived from PET imaging. Methods Low and high levels of CSF phosphorylated tau were first identified to establish optimal cutoffs for CSF beta-amyloid (A beta) peptide biomarkers. These A beta cutoffs were then used to determine cutoffs for CSF tau and phosphorylated tau markers. We compared this algorithm to a reference method, based on tau and amyloid PET imaging status (ADNI study), and then applied the algorithm to 10 large clinical cohorts of patients. Results A total of 6,922 patients with CSF biomarker data were included (mean [SD] age: 70.6 [8.5] years, 51.0% women). In the ADNI study population (n = 497), the agreement between classification based on our algorithm and the one based on amyloid/tau PET imaging was high, with Cohen's kappa coefficient between 0.87 and 0.99. Applying the algorithm to 10 large cohorts of patients (n = 6,425), the proportion of persons with AD ranged from 25.9% to 43.5%. Discussion The proposed novel, pragmatic method to determine CSF biomarker cutoffs for AD does not require assessment of other biomarkers or assumptions concerning the clinical diagnosis of patients. Use of this standardized algorithm is likely to reduce heterogeneity in AD classification.
  •  
2.
  • Mouton-Liger, F., et al. (författare)
  • CSF levels of the BACE1 substrate NRG1 correlate with cognition in Alzheimer's disease
  • 2020
  • Ingår i: Alzheimer's Research & Therapy. - : Springer Science and Business Media LLC. - 1758-9193. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The presynaptic protein neuregulin1 (NRG1) is cleaved by beta-site APP cleaving enzyme 1 (BACE1) in a similar way as amyloid precursor protein (APP) NRG1 can activate post-synaptic receptor tyrosine-protein kinase erbB4 (ErbB4) and was linked to schizophrenia. The NRG1/ErbB4 complex is neuroprotective, can trigger synaptogenesis and plasticity, increases the expression of NMDA and GABA receptors, and can induce neuroinflammation. This complex can reduce memory formation. In Alzheimer's disease (AD) brains, NRG1 accumulates in neuritic plaques. It is difficult to determine if NRG1 has beneficial and/or detrimental effects in AD. BACE1 levels are increased in AD brains and cerebrospinal fluid (CSF) and may lead to enhanced NRG1 secretion, but no study has assessed CSF NRG1 levels in AD and mild cognitive impairment (MCI) patients. Methods: This retrospective study included 162 patients suffering from AD dementia (54), MCI with progression to AD dementia (MCI-AD) (27), non-AD MCI (30), non-AD dementias (30), and neurological controls (27). All patients had neurological examinations, brain MRI, and neuropsychological evaluations. After written informed consent and using enzyme-linked immunosorbent assays (ELISAs), CSF samples were evaluated for A beta 1-42, A beta 1-40, total tau (T-tau), phosphorylated tau on threonine 181 (P-tau), BACE1, growth-associated protein 43 (GAP 43), neurogranin (Ng), and NRG1. Results: Levels of NRG1 were significantly increased in the CSF of AD (+ 36%) and MCI-AD (+ 28%) patients compared to neurological controls and also non-AD MCI and non-AD dementias. In addition, in AD and MCI-AD patients, NRG1 levels positively correlated with A beta 1-42 but not with T-tau, P-tau, and BACE1 levels and negatively correlated with MMSE scores. A longitudinal follow-up study of AD patients revealed a trend (p = 0.08) between CSF NRG1 levels and cognitive decline. In the overall population, NRG1 correlated with MMSE and the synaptic biomarkers GAP 43 and neurogranin. Conclusions: Our results showed that CSF NRG1 levels are increased in AD and MCI-AD as compared to controls and other dementias. CSF NRG1 levels are associated with cognitive evolution, and a major outcome of our findings is that synaptic NRG1 could be involved in the pathophysiology of AD. Modulating brain NRG1 activity may represent a new therapeutic target in AD.
  •  
3.
  •  
4.
  • Lantero Rodriguez, Juan, et al. (författare)
  • Clinical performance and head-to-head comparison of CSF p-tau235 with p-tau181, p-tau217 and p-tau231 in two memory clinic cohorts
  • 2023
  • Ingår i: Alzheimers Research & Therapy. - : Springer Science and Business Media LLC. - 1758-9193. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Cerebrospinal fluid (CSF) p-tau235 is a novel biomarker highly specific of Alzheimer's disease (AD). However, CSF p-tau235 has only been studied in well-characterized research cohorts, which do not fully reflect the patient landscape found in clinical settings. Therefore, in this multicentre study, we investigated the performance of CSF p-tau235 to detect symptomatic AD in clinical settings and compared it with CSF p-tau181, p-tau217 and p-tau231.Methods CSF p-tau235 was measured using an in-house single molecule array (Simoa) assay in two independent memory clinic cohorts: Paris cohort (Lariboisiere Fernand-Widal University Hospital Paris, France; n=212) and BIODEGMAR cohort (Hospital del Mar, Barcelona, Spain; n=175). Patients were classified by the syndromic diagnosis (cognitively unimpaired [CU], mild cognitive impairment [MCI] or dementia) and their biological diagnosis (amyloid-beta [A beta]+ or A beta -) Both cohorts included detailed cognitive assessments and CSF biomarker measurements (clinically validated core AD biomarkers [Lumipulse CSF A beta(1-42/40) ratio, p-tau181 and t-tau] and in-house developed Simoa CSF p-tau181, p-tau217 and p-tau231).Results High CSF p-tau235 levels were strongly associated with CSF amyloidosis regardless of the clinical diagnosis, being significantly increased in MCI A beta+ and dementia A beta+ when compared with all other A beta- groups (Paris cohort: P < 0.0001 for all; BIODEGMAR cohort: P < 0.05 for all). CSF p-tau235 was pronouncedly increased in the A+T+ profile group compared with A-T- and A+T- groups (P < 0.0001 for all). Moreover, CSF p-tau235 demonstrated high diagnostic accuracies identifying CSF amyloidosis in symptomatic cases (AUCs=0.86 to 0.96) and discriminating AT groups (AUCs=0.79 to 0.98). Overall, CSF p-tau235 showed similar performances to CSF p-tau181 and CSF p-tau231 when discriminating CSF amyloidosis in various scenarios, but lower than CSF p-tau217. Finally, CSF p-tau235 associated with global cognition and memory domain in both cohorts.Conclusions CSF p-tau235 was increased with the presence of CSF amyloidosis in two independent memory clinic cohorts. CSF p-tau235 accurately identified AD in both MCI and dementia patients. Overall, the diagnostic performance of CSF p-tau235 was comparable to that of other CSF p-tau measurements, indicating its suitability to support a biomarker-based AD diagnosis in clinical settings.
  •  
5.
  • Lessa Benedet, Andréa, et al. (författare)
  • Differences Between Plasma and Cerebrospinal Fluid Glial Fibrillary Acidic Protein Levels Across the Alzheimer Disease Continuum
  • 2021
  • Ingår i: Jama Neurology. - : American Medical Association (AMA). - 2168-6149. ; 78:12, s. 1471-1483
  • Tidskriftsartikel (refereegranskat)abstract
    • Question What are the levels of plasma glial fibrillary acidic protein (GFAP) throughout the Alzheimer disease (AD) continuum, and how do they compare with the levels of cerebrospinal fluid (CSF) GFAP? Findings In this cross-sectional study, plasma GFAP levels were elevated in the preclinical and symptomatic stages of AD, with levels higher than those of CSF GFAP. Plasma GFAP had a higher accuracy than CSF GFAP to discriminate between amyloid-beta (A beta)-positive and A beta-negative individuals, also at the preclinical stage. Meaning This study suggests that plasma GFAP is a sensitive biomarker that significantly outperforms CSF GFAP in indicating A beta pathology in the early stages of AD. Importance Glial fibrillary acidic protein (GFAP) is a marker of reactive astrogliosis that increases in the cerebrospinal fluid (CSF) and blood of individuals with Alzheimer disease (AD). However, it is not known whether there are differences in blood GFAP levels across the entire AD continuum and whether its performance is similar to that of CSF GFAP. Objective To evaluate plasma GFAP levels throughout the entire AD continuum, from preclinical AD to AD dementia, compared with CSF GFAP. Design, Setting, and Participants This observational, cross-sectional study collected data from July 29, 2014, to January 31, 2020, from 3 centers. The Translational Biomarkers in Aging and Dementia (TRIAD) cohort (Montreal, Canada) included individuals in the entire AD continuum. Results were confirmed in the Alzheimer's and Families (ALFA+) study (Barcelona, Spain), which included individuals with preclinical AD, and the BioCogBank Paris Lariboisiere cohort (Paris, France), which included individuals with symptomatic AD. Main Outcomes and Measures Plasma and CSF GFAP levels measured with a Simoa assay were the main outcome. Other measurements included levels of CSF amyloid-beta 42/40 (A beta 42/40), phosphorylated tau181 (p-tau181), neurofilament light (NfL), Chitinase-3-like protein 1 (YKL40), and soluble triggering receptor expressed on myeloid cells 2 (sTREM2) and levels of plasma p-tau181 and NfL. Results of amyloid positron emission tomography (PET) were available in TRIAD and ALFA+, and results of tau PET were available in TRIAD. Results A total of 300 TRIAD participants (177 women [59.0%]; mean [SD] age, 64.6 [17.6] years), 384 ALFA+ participants (234 women [60.9%]; mean [SD] age, 61.1 [4.7] years), and 187 BioCogBank Paris Lariboisiere participants (116 women [62.0%]; mean [SD] age, 69.9 [9.2] years) were included. Plasma GFAP levels were significantly higher in individuals with preclinical AD in comparison with cognitively unimpaired (CU) A beta-negative individuals (TRIAD: A beta-negative mean [SD], 185.1 [93.5] pg/mL, A beta-positive mean [SD], 285.0 [142.6] pg/mL; ALFA+: A beta-negative mean [SD], 121.9 [42.4] pg/mL, A beta-positive mean [SD], 169.9 [78.5] pg/mL). Plasma GFAP levels were also higher among individuals in symptomatic stages of the AD continuum (TRIAD: CU A beta-positive mean [SD], 285.0 [142.6] pg/mL, mild cognitive impairment [MCI] A beta-positive mean [SD], 332.5 [153.6] pg/mL; AD mean [SD], 388.1 [152.8] pg/mL vs CU A beta-negative mean [SD], 185.1 [93.5] pg/mL; Paris: MCI A beta-positive, mean [SD], 368.6 [158.5] pg/mL; AD dementia, mean [SD], 376.4 [179.6] pg/mL vs CU A beta-negative mean [SD], 161.2 [67.1] pg/mL). Plasma GFAP magnitude changes were consistently higher than those of CSF GFAP. Plasma GFAP more accurately discriminated A beta-positive from A beta-negative individuals than CSF GFAP (area under the curve for plasma GFAP, 0.69-0.86; area under the curve for CSF GFAP, 0.59-0.76). Moreover, plasma GFAP levels were positively associated with tau pathology only among individuals with concomitant A beta pathology. Conclusions and Relevance This study suggests that plasma GFAP is a sensitive biomarker for detecting and tracking reactive astrogliosis and A beta pathology even among individuals in the early stages of AD. This cross-sectional cohort study evaluates plasma glial fibrillary acidic protein levels throughout the entire Alzheimer disease continuum, from preclinical Alzheimer disease to Alzheimer disease dementia, compared with cerebrospinal fluid glial fibrillary acidic protein.
  •  
6.
  • Saddiki, H., et al. (författare)
  • Age and the association between apolipoprotein E genotype and Alzheimer disease: A cerebrospinal fluid biomarker-based case-control study
  • 2020
  • Ingår i: Plos Medicine. - : Public Library of Science (PLoS). - 1549-1277 .- 1549-1676. ; 17:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Background The epsilon 4 allele of apolipoprotein E (APOE) gene and increasing age are two of the most important known risk factors for developing Alzheimer disease (AD). The diagnosis of AD based on clinical symptoms alone is known to have poor specificity; recently developed diagnostic criteria based on biomarkers that reflect underlying AD neuropathology allow better assessment of the strength of the associations of risk factors with AD. Accordingly, we examined the global and age-specific association betweenAPOEgenotype and AD by using the A/T/N classification, relying on the cerebrospinal fluid (CSF) levels of beta-amyloid peptide (A, beta-amyloid deposition), phosphorylated tau (T, pathologic tau), and total tau (N, neurodegeneration) to identify patients with AD. Methods and findings This case-control study included 1,593 white AD cases (55.4% women; mean age 72.8 [range = 44-96] years) with abnormal values of CSF biomarkers from nine European memory clinics and the American Alzheimer's Disease Neuroimaging Initiative (ADNI) study. A total of 11,723 dementia-free controls (47.1% women; mean age 65.6 [range = 44-94] years) were drawn from two longitudinal cohort studies (Whitehall II and Three-City), in which incident cases of dementia over the follow-up were excluded from the control population. Odds ratio (OR) and population attributable fraction (PAF) for AD associated withAPOEgenotypes were determined, overall and by 5-year age categories. In total, 63.4% of patients with AD and 22.6% of population controls carried at least oneAPOE epsilon 4 allele. Compared with non-epsilon 4 carriers, heterozygous epsilon 4 carriers had a 4.6 (95% confidence interval 4.1-5.2;p< 0.001) and epsilon 4/epsilon 4 homozygotes a 25.4 (20.4-31.2;p< 0.001) higher OR of AD in unadjusted analysis. This association was modified by age (pfor interaction < 0.001). The PAF associated with carrying at least one epsilon 4 allele was greatest in the 65-70 age group (69.7%) and weaker before 55 years (14.2%) and after 85 years (22.6%). The protective effect ofAPOE epsilon 2 allele for AD was unaffected by age. Main study limitations are that analyses were based on white individuals and AD cases were drawn from memory centers, which may not be representative of the general population of patients with AD. Conclusions In this study, we found that AD diagnosis based on biomarkers was associated with APOE epsilon 4 carrier status, with a higher OR than previously reported from studies based on only clinical AD criteria. This association differs according to age, with the strongest effect at 65-70 years. These findings highlight the need for early interventions for dementia prevention to mitigate the effect ofAPOE epsilon 4 at the population level. Author summaryWhy was this study done? The epsilon 4 allele of apolipoprotein E () gene () and increasing age are two of the most important known risk factors for developing Alzheimer disease (AD). The recent development of diagnostic criteria based on biomarkers that reflect brain beta-amyloid and tau lesions (beta-amyloid deposition, pathologic tau, neurodegeneration [A/T/N] classification]) increases homogeneity in diagnosed cases. The strength of association of AD with risk factors can be better determined using biomarker-based AD compared with AD diagnosis based only on clinical criteria because the latter are known to lack specificity as a result of difficulties in ruling out other causes of dementia. What did the researchers do and find? We compared the overall and age-specific association between and AD using a case-control study that included 1,593 AD cases from memory clinics with positive cerebrospinal fluid biomarkers and 11,723 dementia-free controls drawn from two longitudinal cohort studies. The use of a large number of cases and controls allows assessment of whether the association between and AD is dependent on age. Compared with controls, patients with AD were more likely to carry one (odds ratio [OR] = 4.6) or two (OR = 25.3). This association was significantly modified by age, with the strongest association seen between 65 and 70 years of age and weaker associations at the two tails of the age distribution. What do these findings mean? Incorporating biomarkers for diagnosis of AD identified an association with that is apparently greater than has been previously reported using clinical diagnosis of the disease. The impact of on the risk of AD was strongest between the 65 and 70 years of age, earlier than the mean age at diagnosis in this study, which was 72.8 years.
  •  
7.
  • Vrillon, A., et al. (författare)
  • Plasma neuregulin 1 as a synaptic biomarker in Alzheimer's disease: a discovery cohort study
  • 2022
  • Ingår i: Alzheimers Research & Therapy. - : Springer Science and Business Media LLC. - 1758-9193. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Synaptic dysfunction is an early core feature of Alzheimer's disease (AD), closely associated with cognitive symptoms. Neuregulin 1 (NRG1) is a growth and differentiation factor with a key role in the development and maintenance of synaptic transmission. Previous reports have shown that changes in cerebrospinal fluid (CSF) NRG1 concentration are associated with cognitive status and biomarker evidence of AD pathology. Plasma biomarkers reflecting synaptic impairment would be of great clinical interest. Objective To measure plasma NRG1 concentration in AD patients in comparison with other neurodegenerative disorders and neurological controls (NC) and to study its association with cerebrospinal fluid (CSF) core AD and synaptic biomarkers. Methods This retrospective study enrolled 127 participants including patients with AD at mild cognitive impairment stage (AD-MCI, n = 27) and at dementia stage (n = 35), non-AD dementia (n = 26, A beta-negative), non-AD MCI (n = 19), and neurological controls (n=20). Plasma and CSF NRG1, as well as CSF core AD biomarkers (A beta 42/A beta 40 ratio, phospho-tau, and total tau), were measured using ELISA. CSF synaptic markers were measured using ELISA for GAP-43 and neurogranin and through immunoprecipitation mass spectrometry for SNAP-25. Results Plasma NRG1 concentration was higher in AD-MCI and AD dementia patients compared with neurological controls (respectively P = 0.005 and P < 0.001). Plasma NRG1 differentiated AD MCI patients from neurological controls with an area under the curve of 88.3%, and AD dementia patients from NC with an area under the curve of 87.3%. Plasma NRG1 correlated with CSF NRG1 (beta = 0.372, P = 0.0056, adjusted on age and sex). Plasma NRG1 was associated with AD CSF core biomarkers in the whole cohort and in A beta-positive patients (beta = -0.197-0.423). Plasma NRG1 correlated with CSF GAP-43, neurogranin, and SNAP-25 (beta = 0.278-0.355). Plasma NRG1 concentration correlated inversely with MMSE in the whole cohort and in A beta-positive patients (all, beta = -0.188, P = 0.038; A beta+: beta = -0.255, P = 0.038). Conclusion Plasma NRG1 concentration is increased in AD patients and correlates with CSF core AD and synaptic biomarkers and cognitive status. Thus, plasma NRG1 is a promising non-invasive biomarker to monitor synaptic impairment in AD.
  •  
8.
  • Boza-Serrano, A., et al. (författare)
  • Galectin-3 is elevated in CSF and is associated with A beta deposits and tau aggregates in brain tissue in Alzheimer's disease
  • 2022
  • Ingår i: Acta Neuropathologica. - : Springer Science and Business Media LLC. - 0001-6322 .- 1432-0533.
  • Tidskriftsartikel (refereegranskat)abstract
    • Galectin-3 (Gal-3) is a beta-galactosidase binding protein involved in microglial activation in the central nervous system (CNS). We previously demonstrated the crucial deleterious role of Gal-3 in microglial activation in Alzheimer's disease (AD). Under AD conditions, Gal-3 is primarily expressed by microglial cells clustered around A beta plaques in both human and mouse brain, and knocking out Gal-3 reduces AD pathology in AD-model mice. To further unravel the importance of Gal-3-associated inflammation in AD, we aimed to investigate the Gal-3 inflammatory response in the AD continuum. First, we measured Gal-3 levels in neocortical and hippocampal tissue from early-onset AD patients, including genetic and sporadic cases. We found that Gal-3 levels were significantly higher in both cortex and hippocampus in AD subjects. Immunohistochemistry revealed that Gal-3+ microglial cells were associated with amyloid plaques of a larger size and more irregular shape and with neurons containing tau-inclusions. We then analyzed the levels of Gal-3 in cerebrospinal fluid (CSF) from AD patients (n=119) compared to control individuals (n= 36). CSF Gal-3 levels were elevated in AD patients compared to controls and more strongly correlated with tau (p-Tau181 and t-tau) and synaptic markers (GAP-43 and neurogranin) than with amyloid-beta. Lastly, principal component analysis (PCA) of AD biomarkers revealed that CSF Gal-3 clustered and associated with other CSF neuroinflammatory markers, including sTREM-2, GFAP, and YKL-40. This neuroinflammatory component was more highly expressed in the CSF from amyloid-beta positive (A+), CSF p-Tau181 positive (T+), and biomarker neurodegeneration positive/negative (N+/-) (A + T +N+/-) groups compared to the A + T-N- group. Overall, Gal-3 stands out as a key pathological biomarker of AD pathology that is measurable in CSF and, therefore, a potential target for disease-modifying therapies involving the neuroinflammatory response.
  •  
9.
  • Camporesi, Elena, et al. (författare)
  • Quantification of the trans-synaptic partners neurexin-neuroligin in CSF of neurodegenerative diseases by parallel reaction monitoring mass spectrometry
  • 2022
  • Ingår i: Ebiomedicine. - : Elsevier BV. - 2352-3964. ; 75
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Synaptic proteins are increasingly studied as biomarkers for synaptic dysfunction and loss, which are early and central events in Alzheimer's disease (AD) and strongly correlate with the degree of cognitive decline. In this study, we specifically investigated the synaptic binding partners neurexin (NRXN) and neuroligin (Nlgn) proteins, to assess their biomarker's potential. Methods: we developed a parallel reaction monitoring mass spectrometric method for the simultaneous quantification of NRXNs and Nlgns in cerebrospinal fluid (CSF) of neurodegenerative diseases, focusing on AD. Specifically, NRXN-1α, NRXN-1β, NRXN-2α, NRXN-3α and Nlgn1, Nlgn2, Nlgn3 and Nlgn4 proteins were targeted. Findings: The proteins were investigated in a clinical cohort including CSF from controls (n=22), mild cognitive impairment (MCI) due to AD (n=44), MCI due to other conditions (n=46), AD (n=77) and a group of non-AD dementia (n=28). No difference in levels of NRXNs and Nlgns was found between AD (both at dementia and MCI stages) or controls or the non-AD dementia group for any of the targeted proteins. NRXN and Nlgn proteins correlated strongly with each other, but only a weak correlation with the AD core biomarkers and the synaptic biomarkers neurogranin and growth-associated protein 43, was found, possibly reflecting different pathogenic processing at the synapse. Interpretation: we conclude that NRXN and Nlgn proteins do not represent suitable biomarkers for synaptic pathology in AD. The panel developed here could aid in future investigations of the potential involvement of NRXNs and Nlgns in synaptic dysfunction in other disorders of the central nervous system. Funding: a full list of funding can be found under the acknowledgments section. © 2021 The Author(s)
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy