SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Colauzzi M.) "

Sökning: WFRF:(Colauzzi M.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Campana, Pietro Elia, 1984-, et al. (författare)
  • Experimental results, integrated model validation, and economic aspects of agrivoltaic systems at northern latitudes
  • 2024
  • Ingår i: Journal of Cleaner Production. - : Elsevier Ltd. - 0959-6526 .- 1879-1786. ; 437
  • Tidskriftsartikel (refereegranskat)abstract
    • Agrivoltaic systems, which allow the coexistence of crop and electricity production on the same land, are an integrated water–energy–food nexus solution that allows the simultaneous attainment of conflicting Sustainable Development Goals. This study aims to analyse experimental results on the responses of ley grass yield and quality to shadings in the first agrivoltaic system in Sweden. It also aims to validate an integrated modelling platform for assessing agrivoltaic systems' performances before installation. An economic analysis is carried out to compare the profitability of agrivoltaic versus conventional ground-mounted photovoltaic systems and, using a Monte Carlo Analysis, to identify the parameters that most affect the profitability. Despite the agrivoltaic systems’ supporting structures and photovoltaic modules producing an average ∼25% reduction in photosynthetically active radiation at ground level, no statistically significant difference was observed between the yield of the samples under the agrivoltaic system compared to the yield of the samples in the reference area. The agrivoltaic system attained land equivalent ratios of 1.27 and 1.39 in 2021 and 2022, respectively. The validation results of the integrated modelling platform show that the sub-model concerning the crop yield response to shading conditions tends to underestimate ∼7% the actual average crop yield under the agrivoltaic system. The results of the economic analysis show that, from a net present value perspective, agrivoltaic systems have a profitability that is ∼30 times higher than a conventional crop rotation in Sweden.
  •  
2.
  • Campana, Pietro Elia, 1984-, et al. (författare)
  • Optimisation of vertically mounted agrivoltaic systems
  • 2021
  • Ingår i: Journal of Cleaner Production. - : Elsevier Ltd. - 0959-6526 .- 1879-1786. ; 325
  • Tidskriftsartikel (refereegranskat)abstract
    • Agrivoltaic systems represent a key technology for reaching sustainable development goals, by reducing the competition of land used for food versus land used for electricity. Moreover, agrivoltaic systems are at the centre of the nexus between electricity production, crop production, and irrigation water savings. In this study, an optimisation model for vertically mounted agrivoltaic systems with bifacial photovoltaic modules is developed. The model combines three main sub-models: solar radiation and shadings, photovoltaics, and crop yield. Validation of the sub-models is performed showing good agreement with measured data and commercial software. The optimisation model is set as multi objective to explore the trade-offs between competing agrivoltaic key performance indicators. Oats and potatoes are used as reference crops in this study. The results show that the row distance between bifacial photovoltaic module structures significantly affects the photosynthetically active radiation distribution. The resulting crop yield of oats and potato is reduced by about 50% as row distance decreases from 20 m to 5 m. The implementation of an agrivoltaic system for the investigated crops at the chosen location shows a land equivalent ratio above 1.2, which justifies the use of the technology for reaching national sustainability goals.
  •  
3.
  • Ma Lu, Silvia, et al. (författare)
  • Photosynthetically active radiation decomposition models for agrivoltaic systems applications
  • 2022
  • Ingår i: Solar Energy. - : PERGAMON-ELSEVIER SCIENCE LTD. - 0038-092X .- 1471-1257. ; 244, s. 536-549
  • Tidskriftsartikel (refereegranskat)abstract
    • Decomposition models of solar irradiance estimate the magnitude of diffuse horizontal irradiance from global horizontal irradiance. These two radiation components are well known to be essential for predicting the performance of solar photovoltaic systems. In open-field agrivoltaic systems (i.e., the dual use of land for both agricultural activities and solar power conversion), cultivated crops receive unequal amounts of direct, diffuse, and reflected photosynthetically active radiation (PAR). These uneven amounts depend on where the crops are growing due to the non-homogenous shadings caused by the presence of the installed solar panels (above the crops or vertically mounted). It is known that, per unit of total PAR, diffuse PAR is more efficient for canopy photosynthesis than is direct PAR. For this reason, it is essential to estimate the diffuse PAR component when agrivoltaic systems are being assessed, in order to properly predict the crop yield. Since PAR is the electro-magnetic radiation in the 400-700 nm waveband that can be used for photosynthesis by the crops, several stand-alone decomposition models typically used to split global horizontal irradiance are selected in this study to decompose PAR into direct and diffuse. These models are applied and validated in three locations in Sweden (Lanna, Hyltemossa and Norunda) using the coefficients stated on the models' original publications and locally fitted coefficients. The results showed weaker performances in all stand-alone models for non-locally fitted coefficients (nRMSE ranging from 27% to 43%). However, performances improve with re-parameterization, with a highest nRMSE of 35.24% in Lanna. The Y(ANG)2 decomposition model is the best-performing one, with the lowest nRMSE of 23.75% in Norunda when applying re-estimated coefficients. Country level sets of coefficients for the best-performing models (Y(ANG)2 and STARKE) are given after parameterization using combined data for all three locations in Sweden. These Sweden-fitted models are tested and show an nRMSE of 25.08% (Y(ANG)2) and 28.60% (STARKE). These results can be used to perform estimations of the PAR diffuse component in Sweden wherever ground measurements are not available. The overall methodology can be similarly applied to other countries.
  •  
4.
  • Zainali, Sebastian, et al. (författare)
  • Direct and diffuse shading factors modelling for the most representative agrivoltaic system layouts
  • 2023
  • Ingår i: Applied Energy. - : Elsevier Ltd. - 0306-2619 .- 1872-9118. ; 339
  • Tidskriftsartikel (refereegranskat)abstract
    • Agrivoltaic systems are becoming increasingly popular as a crucial technology for attaining multiple sustainable development goals, such as affordable and clean energy, zero hunger, clean water and sanitation, and climate action. However, a comprehensive understanding of the shading effects on crops is essential for choosing an optimal agrivoltaic system, as an incorrect choice can result in significant crop yield reductions. In this study, fixed vertical, one-axis tracking, and two-axis tracking photovoltaic arrays were developed for agrivoltaic applications to analyse the shading conditions on the ground used for crop production. The models demonstrated remarkable accuracy in comparison to commercial software such as PVsyst® and SketchUp®. These models will help to reduce crop yield uncertainty under agrivoltaic systems by providing accurate photosynthetically active radiation distribution at the crop level. The photosynthetically active radiation distribution was further analysed using a light homogeneity index, and the results showed that homogeneity and photosynthetically active radiation reduction varied significantly depending on the agrivoltaic system design, ranging from 86% to 95%, and 11% to 22%, respectively. Studying the effect of shading with distribution analysis is crucial for identifying the most suitable agrivoltaic system layout for specific crops and geographical locations.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy