SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Colin Prentice I.) "

Search: WFRF:(Colin Prentice I.)

  • Result 1-10 of 19
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Surendran, Praveen, et al. (author)
  • Discovery of rare variants associated with blood pressure regulation through meta-analysis of 1.3 million individuals
  • 2020
  • In: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 52:12, s. 1314-1332
  • Journal article (peer-reviewed)abstract
    • Genetic studies of blood pressure (BP) to date have mainly analyzed common variants (minor allele frequency > 0.05). In a meta-analysis of up to similar to 1.3 million participants, we discovered 106 new BP-associated genomic regions and 87 rare (minor allele frequency <= 0.01) variant BP associations (P < 5 x 10(-8)), of which 32 were in new BP-associated loci and 55 were independent BP-associated single-nucleotide variants within known BP-associated regions. Average effects of rare variants (44% coding) were similar to 8 times larger than common variant effects and indicate potential candidate causal genes at new and known loci (for example, GATA5 and PLCB3). BP-associated variants (including rare and common) were enriched in regions of active chromatin in fetal tissues, potentially linking fetal development with BP regulation in later life. Multivariable Mendelian randomization suggested possible inverse effects of elevated systolic and diastolic BP on large artery stroke. Our study demonstrates the utility of rare-variant analyses for identifying candidate genes and the results highlight potential therapeutic targets.
  •  
2.
  • Falster, Daniel, et al. (author)
  • AusTraits, a curated plant trait database for the Australian flora
  • 2021
  • In: Scientific Data. - : Nature Portfolio. - 2052-4463. ; 8:1
  • Journal article (peer-reviewed)abstract
    • We introduce the AusTraits database - a compilation of values of plant traits for taxa in the Australian flora (hereafter AusTraits). AusTraits synthesises data on 448 traits across 28,640 taxa from field campaigns, published literature, taxonomic monographs, and individual taxon descriptions. Traits vary in scope from physiological measures of performance (e.g. photosynthetic gas exchange, water-use efficiency) to morphological attributes (e.g. leaf area, seed mass, plant height) which link to aspects of ecological variation. AusTraits contains curated and harmonised individual- and species-level measurements coupled to, where available, contextual information on site properties and experimental conditions. This article provides information on version 3.0.2 of AusTraits which contains data for 997,808 trait-by-taxon combinations. We envision AusTraits as an ongoing collaborative initiative for easily archiving and sharing trait data, which also provides a template for other national or regional initiatives globally to fill persistent gaps in trait knowledge.
  •  
3.
  • Horikoshi, Momoko, et al. (author)
  • New loci associated with birth weight identify genetic links between intrauterine growth and adult height and metabolism.
  • 2013
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 45:1
  • Journal article (peer-reviewed)abstract
    • Birth weight within the normal range is associated with a variety of adult-onset diseases, but the mechanisms behind these associations are poorly understood. Previous genome-wide association studies of birth weight identified a variant in the ADCY5 gene associated both with birth weight and type 2 diabetes and a second variant, near CCNL1, with no obvious link to adult traits. In an expanded genome-wide association meta-analysis and follow-up study of birth weight (of up to 69,308 individuals of European descent from 43 studies), we have now extended the number of loci associated at genome-wide significance to 7, accounting for a similar proportion of variance as maternal smoking. Five of the loci are known to be associated with other phenotypes: ADCY5 and CDKAL1 with type 2 diabetes, ADRB1 with adult blood pressure and HMGA2 and LCORL with adult height. Our findings highlight genetic links between fetal growth and postnatal growth and metabolism.
  •  
4.
  • Gallego-Sala, Angela V., et al. (author)
  • Latitudinal limits to the predicted increase of the peatland carbon sink with warming
  • 2018
  • In: Nature Climate Change. - : Springer Science and Business Media LLC. - 1758-678X .- 1758-6798. ; 8:10, s. 907-
  • Journal article (peer-reviewed)abstract
    • The carbon sink potential of peatlands depends on the balance of carbon uptake by plants and microbial decomposition. The rates of both these processes will increase with warming but it remains unclear which will dominate the global peatland response. Here we examine the global relationship between peatland carbon accumulation rates during the last millennium and planetary-scale climate space. A positive relationship is found between carbon accumulation and cumulative photosynthetically active radiation during the growing season for mid- to high-latitude peatlands in both hemispheres. However, this relationship reverses at lower latitudes, suggesting that carbon accumulation is lower under the warmest climate regimes. Projections under Representative Concentration Pathway (RCP)2.6 and RCP8.5 scenarios indicate that the present-day global sink will increase slightly until around AD 2100 but decline thereafter. Peatlands will remain a carbon sink in the future, but their response to warming switches from a negative to a positive climate feedback (decreased carbon sink with warming) at the end of the twenty-first century.
  •  
5.
  • Hantson, Stijn, et al. (author)
  • Quantitative assessment of fire and vegetation properties in simulations with fire-enabled vegetation models from the Fire Model Intercomparison Project
  • 2020
  • In: Geoscientific Model Development. - : Copernicus GmbH. - 1991-959X .- 1991-9603. ; 13:7, s. 3299-3318
  • Journal article (peer-reviewed)abstract
    • Global fire-vegetation models are widely used to assess impacts of environmental change on fire regimes and the carbon cycle and to infer relationships between climate, land use and fire. However, differences in model structure and parameterizations, in both the vegetation and fire components of these models, could influence overall model performance, and to date there has been limited evaluation of how well different models represent various aspects of fire regimes. The Fire Model Intercomparison Project (FireMIP) is coordinating the evaluation of state-of-the-art global fire models, in order to improve projections of fire characteristics and fire impacts on ecosystems and human societies in the context of global environmental change. Here we perform a systematic evaluation of historical simulations made by nine FireMIP models to quantify their ability to reproduce a range of fire and vegetation benchmarks. The FireMIP models simulate a wide range in global annual total burnt area (39-536 Mha) and global annual fire carbon emission (0.91-4.75 Pg C yr-1) for modern conditions (2002-2012), but most of the range in burnt area is within observational uncertainty (345-468 Mha). Benchmarking scores indicate that seven out of nine FireMIP models are able to represent the spatial pattern in burnt area. The models also reproduce the seasonality in burnt area reasonably well but struggle to simulate fire season length and are largely unable to represent interannual variations in burnt area. However, models that represent cropland fires see improved simulation of fire seasonality in the Northern Hemisphere. The three FireMIP models which explicitly simulate individual fires are able to reproduce the spatial pattern in number of fires, but fire sizes are too small in key regions, and this results in an underestimation of burnt area. The correct representation of spatial and seasonal patterns in vegetation appears to correlate with a better representation of burnt area. The two older fire models included in the FireMIP ensemble (LPJ-GUESS-GlobFIRM, MC2) clearly perform less well globally than other models, but it is difficult to distinguish between the remaining ensemble members; some of these models are better at representing certain aspects of the fire regime; none clearly outperforms all other models across the full range of variables assessed.
  •  
6.
  • Hantson, Stijn, et al. (author)
  • The status and challenge of global fire modelling
  • 2016
  • In: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 13:11, s. 3359-3375
  • Journal article (peer-reviewed)abstract
    • Biomass burning impacts vegetation dynamics, biogeochemical cycling, atmospheric chemistry, and climate, with sometimes deleterious socio-economic impacts. Under future climate projections it is often expected that the risk of wildfires will increase. Our ability to predict the magnitude and geographic pattern of future fire impacts rests on our ability to model fire regimes, using either well-founded empirical relationships or process-based models with good predictive skill. While a large variety of models exist today, it is still unclear which type of model or degree of complexity is required to model fire adequately at regional to global scales. This is the central question underpinning the creation of the Fire Model Intercomparison Project (FireMIP), an international initiative to compare and evaluate existing global fire models against benchmark data sets for present-day and historical conditions. In this paper we review how fires have been represented in fire-enabled dynamic global vegetation models (DGVMs) and give an overview of the current state of the art in fire-regime modelling. We indicate which challenges still remain in global fire modelling and stress the need for a comprehensive model evaluation and outline what lessons may be learned from FireMIP.
  •  
7.
  • Rabin, Sam S., et al. (author)
  • The Fire Modeling Intercomparison Project (FireMIP), phase 1 : Experimental and analytical protocols with detailed model descriptions
  • 2017
  • In: Geoscientific Model Development. - : Copernicus GmbH. - 1991-959X .- 1991-9603. ; 10:3, s. 1175-1197
  • Journal article (peer-reviewed)abstract
    • The important role of fire in regulating vegetation community composition and contributions to emissions of greenhouse gases and aerosols make it a critical component of dynamic global vegetation models and Earth system models. Over 2 decades of development, a wide variety of model structures and mechanisms have been designed and incorporated into global fire models, which have been linked to different vegetation models. However, there has not yet been a systematic examination of how these different strategies contribute to model performance. Here we describe the structure of the first phase of the Fire Model Intercomparison Project (FireMIP), which for the first time seeks to systematically compare a number of models. By combining a standardized set of input data and model experiments with a rigorous comparison of model outputs to each other and to observations, we will improve the understanding of what drives vegetation fire, how it can best be simulated, and what new or improved observational data could allow better constraints on model behavior. In this paper, we introduce the fire models used in the first phase of FireMIP, the simulation protocols applied, and the benchmarking system used to evaluate the models. We have also created supplementary tables that describe, in thorough mathematical detail, the structure of each model.
  •  
8.
  • Smith, N. G., et al. (author)
  • Global photosynthetic capacity is optimized to the environment
  • 2019
  • In: Ecology Letters. - : Wiley. - 1461-023X .- 1461-0248. ; 22:3, s. 506-517
  • Journal article (peer-reviewed)abstract
    • Earth system models (ESMs) use photosynthetic capacity, indexed by the maximum Rubisco carboxylation rate (V-cmax), to simulate carbon assimilation and typically rely on empirical estimates, including an assumed dependence on leaf nitrogen determined from soil fertility. In contrast, new theory, based on biochemical coordination and co-optimization of carboxylation and water costs for photosynthesis, suggests that optimal V-cmax can be predicted from climate alone, irrespective of soil fertility. Here, we develop this theory and find it captures 64% of observed variability in a global, field-measured V-cmax dataset for C-3 plants. Soil fertility indices explained substantially less variation (32%). These results indicate that environmentally regulated biophysical constraints and light availability are the first-order drivers of global photosynthetic capacity. Through acclimation and adaptation, plants efficiently utilize resources at the leaf level, thus maximizing potential resource use for growth and reproduction. Our theory offers a robust strategy for dynamically predicting photosynthetic capacity in ESMs.
  •  
9.
  • Davis, Tyler W., et al. (author)
  • Simple process-led algorithms for simulating habitats (SPLASH v.1.0) : Robust indices of radiation, evapotranspiration and plant-available moisture
  • 2017
  • In: Geoscientific Model Development. - : Copernicus GmbH. - 1991-959X .- 1991-9603. ; 10:2, s. 689-708
  • Journal article (peer-reviewed)abstract
    • Bioclimatic indices for use in studies of ecosystem function, species distribution, and vegetation dynamics under changing climate scenarios depend on estimates of surface fluxes and other quantities, such as radiation, evapotranspiration and soil moisture, for which direct observations are sparse. These quantities can be derived indirectly from meteorological variables, such as near-surface air temperature, precipitation and cloudiness. Here we present a consolidated set of simple process-led algorithms for simulating habitats (SPLASH) allowing robust approximations of key quantities at ecologically relevant timescales. We specify equations, derivations, simplifications, and assumptions for the estimation of daily and monthly quantities of top-of-the-atmosphere solar radiation, net surface radiation, photosynthetic photon flux density, evapotranspiration (potential, equilibrium, and actual), condensation, soil moisture, and runoff, based on analysis of their relationship to fundamental climatic drivers. The climatic drivers include a minimum of three meteorological inputs: precipitation, air temperature, and fraction of bright sunshine hours. Indices, such as the moisture index, the climatic water deficit, and the Priestley-Taylor coefficient, are also defined. The SPLASH code is transcribed in C++, FORTRAN, Python, and R. A total of 1 year of results are presented at the local and global scales to exemplify the spatiotemporal patterns of daily and monthly model outputs along with comparisons to other model results.
  •  
10.
  • De Kauwe, Martin G., et al. (author)
  • Forest water use and water use efficiency at elevated CO2: a model-data intercomparison at two contrasting temperate forest FACE sites
  • 2013
  • In: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 19:6, s. 1759-1779
  • Journal article (peer-reviewed)abstract
    • Predicted responses of transpiration to elevated atmospheric CO2 concentration (eCO2) are highly variable amongst process-based models. To better understand and constrain this variability amongst models, we conducted an intercomparison of 11 ecosystem models applied to data from two forest free-air CO2 enrichment (FACE) experiments at Duke University and Oak Ridge National Laboratory. We analysed model structures to identify the key underlying assumptions causing differences in model predictions of transpiration and canopy water use efficiency. We then compared the models against data to identify model assumptions that are incorrect or are large sources of uncertainty. We found that model-to-model and model-to-observations differences resulted from four key sets of assumptions, namely (i) the nature of the stomatal response to elevated CO2 (coupling between photosynthesis and stomata was supported by the data); (ii) the roles of the leaf and atmospheric boundary layer (models which assumed multiple conductance terms in series predicted more decoupled fluxes than observed at the broadleaf site); (iii) the treatment of canopy interception (large intermodel variability, 215%); and (iv) the impact of soil moisture stress (process uncertainty in how models limit carbon and water fluxes during moisture stress). Overall, model predictions of the CO2 effect on WUE were reasonable (intermodel =approximately 28%+/- 10%) compared to the observations (=approximately 30%+/- 13%) at the well-coupled coniferous site (Duke), but poor (intermodel =approximately 24%+/- 6%; observations =approximately 38%+/- 7%) at the broadleaf site (Oak Ridge). The study yields a framework for analysing and interpreting model predictions of transpiration responses to eCO2, and highlights key improvements to these types of models.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 19
Type of publication
journal article (17)
book (1)
conference paper (1)
Type of content
peer-reviewed (19)
Author/Editor
Hickler, Thomas (8)
Harrison, Sandy P. (4)
Wang, Han (4)
Smith, Benjamin (3)
Arneth, Almut (3)
Luo, Yiqi (3)
show more...
Sitch, Stephen (3)
Wang, Ying Ping (3)
Norby, Richard J. (3)
Lasslop, Gitta (3)
Iversen, Colleen M. (3)
Onoda, Yusuke (3)
Zaehle, Soenke (3)
Ciais, Philippe (2)
Wareham, Nicholas J. (2)
Zieminska, Kasia (2)
McCarthy, Mark I (2)
Friedlingstein, Pier ... (2)
Stocker, Benjamin D. (2)
Pedersen, Oluf (2)
Hansen, Torben (2)
Mohlke, Karen L (2)
Rogers, Alistair (2)
Manzoni, Stefano (2)
Jarvelin, Marjo-Riit ... (2)
van Bodegom, Peter M ... (2)
Mahajan, Anubha (2)
Peñuelas, Josep (2)
Spessa, Allan (2)
Niinemets, Ulo (2)
Zhao, Jing Hua (2)
Loos, Ruth J F (2)
Smith, George Davey (2)
Tjoelker, Mark G (2)
Zaragoza-Castells, J ... (2)
Witte, Daniel R (2)
Soudzilovskaia, Nade ... (2)
Timpson, Nicholas J. (2)
Ntalla, Ioanna (2)
Archibald, Sally (2)
Sebert, Sylvain (2)
Lakka, Timo A (2)
Amouyel, Philippe (2)
Cornwell, William K. (2)
Nieradzik, Lars (2)
Cramer, Wolfgang (2)
Mook-Kanamori, Denni ... (2)
Kaplan, Jed O. (2)
Moles, Angela T. (2)
Rosell, Julieta A. (2)
show less...
University
Lund University (13)
Swedish University of Agricultural Sciences (6)
Uppsala University (4)
Stockholm University (3)
University of Gothenburg (2)
Umeå University (2)
show more...
Linköping University (1)
Karlstad University (1)
show less...
Language
English (19)
Research subject (UKÄ/SCB)
Natural sciences (17)
Agricultural Sciences (4)
Engineering and Technology (1)
Medical and Health Sciences (1)
Social Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view