SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Collij Lyduine) "

Sökning: WFRF:(Collij Lyduine)

  • Resultat 1-10 av 28
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bader, I., et al. (författare)
  • Recruitment of pre-dementia participants: main enrollment barriers in a longitudinal amyloid-PET study
  • 2023
  • Ingår i: Alzheimer's Research & Therapy. - 1758-9193. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background The mismatch between the limited availability versus the high demand of participants who are in the pre-dementia phase of Alzheimer's disease (AD) is a bottleneck for clinical studies in AD. Nevertheless, potential enrollment barriers in the pre-dementia population are relatively under-reported. In a large European longitudinal biomarker study (the AMYPAD-PNHS), we investigated main enrollment barriers in individuals with no or mild symptoms recruited from research and clinical parent cohorts (PCs) of ongoing observational studies.Methods Logistic regression was used to predict study refusal based on sex, age, education, global cognition (MMSE), family history of dementia, and number of prior study visits. Study refusal rates and categorized enrollment barriers were compared between PCs using chi-squared tests.Results 535/1856 (28.8%) of the participants recruited from ongoing studies declined participation in the AMYPAD-PNHS. Only for participants recruited from clinical PCs (n = 243), a higher MMSE-score (beta = - 0.22, OR = 0.80, p < .05), more prior study visits (beta = - 0.93, OR = 0.40, p < .001), and positive family history of dementia (beta = 2.08, OR = 8.02, p < .01) resulted in lower odds on study refusal. General study burden was the main enrollment barrier (36.1%), followed by amyloid-PET related burden (PCresearch = 27.4%, PCclinical = 9.0%, X-2 = 10.56, p = .001), and loss of research interest (PCclinical = 46.3%, PCresearch = 16.5%, X-2 = 32.34, p < .001).Conclusions The enrollment rate for the AMYPAD-PNHS was relatively high, suggesting an advantage of recruitment via ongoing studies. In this observational cohort, study burden reduction and tailored strategies may potentially improve participant enrollment into trial readiness cohorts such as for phase-3 early anti-amyloid intervention trials. The AMYPAD-PNHS (EudraCT: 2018-002277-22) was approved by the ethical review board of the VU Medical Center (VUmc) as the Sponsor site and in every affiliated site.
  •  
2.
  • Barthélemy, Nicolas R, et al. (författare)
  • Highly Accurate Blood Test for Alzheimer's Disease Comparable or Superior to Clinical CSF Tests
  • Ingår i: Nature Medicine. - 1546-170X.
  • Tidskriftsartikel (refereegranskat)abstract
    • With the emergence of Alzheimer's disease (AD) disease-modifying therapies, identifying patients who could benefit from these treatments becomes critical. We evaluated whether a precise blood test could perform as well as established cerebrospinal fluid (CSF) tests in detecting amyloid-β (Aβ) plaques and tau tangles. Plasma %p-tau217 (ratio of phosporylated-tau217 to non-phosphorylated tau) was analyzed by mass spectrometry in the Swedish BioFINDER-2 cohort (n=1,422) and the US Knight ADRC cohort (n=337). Matched CSF samples were analyzed with clinically used and FDA-approved automated immunoassays for Aβ42/40 and p-tau181/Aβ42. The primary and secondary outcomes were detection of brain Aβ or tau pathology, respectively, using PET imaging as the reference standard. Main analyses were focused on individuals with cognitive impairment (mild cognitive impairment and mild dementia), which is the target population for available disease-modifying treatments. Plasma %p-tau217 was clinically equivalent to FDA-approved CSF tests in classifying Aβ PET status, with an area-under-the-curve (AUC) for both between 0.95-0.97. Plasma %p-tau217 was generally superior to CSF tests in classification of tau-PET with AUCs of 0.95-0.98. In cognitively impaired sub-cohorts (BioFINDER-2: n=720; Knight ADRC: n=50), plasma %p-tau217 had an accuracy, positive predictive value and negative predictive value of 89-90% for Aβ PET and 87-88% for tau-PET status, which was clinically equivalent to CSF tests, further improving to 95% using a two cut-off approach. Blood plasma %p-tau217 demonstrated performance clinically equivalent or superior to clinically used FDA-approved CSF tests in the detection of AD pathology. Use of high performance blood tests in clinical practice can improve access to accurate AD diagnosis and AD-specific treatments.
  •  
3.
  • Bollack, Ariane, et al. (författare)
  • Evaluation of novel data-driven metrics of amyloid β deposition for longitudinal PET studies
  • 2023
  • Ingår i: NeuroImage. - 1053-8119. ; 280
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: Positron emission tomography (PET) provides in vivo quantification of amyloid-β (Aβ) pathology. Established methods for assessing Aβ burden can be affected by physiological and technical factors. Novel, data-driven metrics have been developed to account for these sources of variability. We aimed to evaluate the performance of four of these amyloid PET metrics against conventional techniques, using a common set of criteria. Methods: Three cohorts were used for evaluation: Insight 46 (N=464, [18F]florbetapir), AIBL (N=277, [18F]flutemetamol), and an independent test-retest data (N=10, [18F]flutemetamol). Established metrics of amyloid tracer uptake included the Centiloid (CL) and where dynamic data was available, the non-displaceable binding potential (BPND). The four data-driven metrics computed were the amyloid load (Aβ load), the Aβ-PET pathology accumulation index (Aβ index), the Centiloid derived from non-negative matrix factorisation (CLNMF), and the amyloid pattern similarity score (AMPSS). These metrics were evaluated using reliability and repeatability in test-retest data, associations with BPND and CL, variability of the rate of change and sample size estimates to detect a 25% slowing in Aβ accumulation. Results: All metrics showed good reliability. Aβ load, Aβ index and CLNMF were strong associated with the BPND. The associations with CL suggest that cross-sectional measures of CLNMF, Aβ index and Aβ load are robust across studies. Sample size estimates for secondary prevention trial scenarios were the lowest for CLNMF and Aβ load compared to the CL. Conclusion: Among the novel data-driven metrics evaluated, the Aβ load, the Aβ index and the CLNMF can provide comparable performance to more established quantification methods of Aβ PET tracer uptake. The CLNMF and Aβ load could offer a more precise alternative to CL, although further studies in larger cohorts should be conducted.
  •  
4.
  • Bollack, Ariane, et al. (författare)
  • Investigating reliable amyloid accumulation in Centiloids : Results from the AMYPAD Prognostic and Natural History Study
  • 2024
  • Ingår i: Alzheimer's and Dementia. - 1552-5260 .- 1552-5279. ; 20:5, s. 3429-3441
  • Tidskriftsartikel (refereegranskat)abstract
    • INTRODUCTION: To support clinical trial designs focused on early interventions, our study determined reliable early amyloid-β (Aβ) accumulation based on Centiloids (CL) in pre-dementia populations. METHODS: A total of 1032 participants from the Amyloid Imaging to Prevent Alzheimer's Disease–Prognostic and Natural History Study (AMYPAD-PNHS) and Insight46 who underwent [18F]flutemetamol, [18F]florbetaben or [18F]florbetapir amyloid-PET were included. A normative strategy was used to define reliable accumulation by estimating the 95th percentile of longitudinal measurements in sub-populations (NPNHS = 101/750, NInsight46 = 35/382) expected to remain stable over time. The baseline CL threshold that optimally predicts future accumulation was investigated using precision-recall analyses. Accumulation rates were examined using linear mixed-effect models. RESULTS: Reliable accumulation in the PNHS was estimated to occur at >3.0 CL/year. Baseline CL of 16 [12,19] best predicted future Aβ-accumulators. Rates of amyloid accumulation were tracer-independent, lower for APOE ε4 non-carriers, and for subjects with higher levels of education. DISCUSSION: Our results support a 12–20 CL window for inclusion into early secondary prevention studies. Reliable accumulation definition warrants further investigations.
  •  
5.
  • Bollack, Ariane, et al. (författare)
  • Longitudinal amyloid and tau PET imaging in Alzheimer's disease : A systematic review of methodologies and factors affecting quantification
  • 2023
  • Ingår i: Alzheimer's and Dementia. - 1552-5260. ; 19:11, s. 5232-5252
  • Forskningsöversikt (refereegranskat)abstract
    • Deposition of amyloid and tau pathology can be quantified in vivo using positron emission tomography (PET). Accurate longitudinal measurements of accumulation from these images are critical for characterizing the start and spread of the disease. However, these measurements are challenging; precision and accuracy can be affected substantially by various sources of errors and variability. This review, supported by a systematic search of the literature, summarizes the current design and methodologies of longitudinal PET studies. Intrinsic, biological causes of variability of the Alzheimer's disease (AD) protein load over time are then detailed. Technical factors contributing to longitudinal PET measurement uncertainty are highlighted, followed by suggestions for mitigating these factors, including possible techniques that leverage shared information between serial scans. Controlling for intrinsic variability and reducing measurement uncertainty in longitudinal PET pipelines will provide more accurate and precise markers of disease evolution, improve clinical trial design, and aid therapy response monitoring.
  •  
6.
  • Brugulat-Serrat, Anna, et al. (författare)
  • APOE -ε4 modulates the association between regional amyloid deposition and cognitive performance in cognitively unimpaired middle-aged individuals
  • 2023
  • Ingår i: EJNMMI Research. - : Springer Science and Business Media LLC. - 2191-219X. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: To determine whether the APOE-ε4 allele modulates the relationship between regional β-amyloid (Aβ) accumulation and cognitive change in middle-aged cognitively unimpaired (CU) participants. Methods: The 352 CU participants (mean aged 61.1 [4.7] years) included completed two cognitive assessments (average interval 3.34 years), underwent [18F]flutemetamol Aβ positron emission tomography (PET), T1w magnetic resonance imaging (MRI), as well as APOE genotyping. Global and regional Aβ PET positivity was assessed across five regions-of-interest by visual reading (VR) and regional Centiloids. Linear regression models were developed to examine the interaction between regional and global Aβ PET positivity and APOE-ε4 status on longitudinal cognitive change assessed with the Preclinical Alzheimer’s Cognitive Composite (PACC), episodic memory, and executive function, after controlling for age, sex, education, cognitive baseline scores, and hippocampal volume. Results: In total, 57 participants (16.2%) were VR+ of whom 41 (71.9%) were APOE-ε4 carriers. No significant APOE-ε4*global Aβ PET interactions were associated with cognitive change for any cognitive test. However, APOE-ε4 carriers who were VR+ in temporal areas (n = 19 [9.81%], p = 0.04) and in the striatum (n = 8 [4.14%], p = 0.01) exhibited a higher decline in the PACC. The temporal areas findings were replicated when regional PET positivity was determined with Centiloid values. Regionally, VR+ in the striatum was associated with higher memory decline. As for executive function, interactions between APOE-ε4 and regional VR+ were found in temporal and parietal regions, and in the striatum. Conclusion: CU APOE-ε4 carriers with a positive Aβ PET VR in regions known to accumulate amyloid at later stages of the Alzheimer’s disease (AD) continuum exhibited a steeper cognitive decline. This work supports the contention that regional VR of Aβ PET might convey prognostic information about future cognitive decline in individuals at higher risk of developing AD. ClinicalTrials.gov Identifier: NCT02485730. Registered 20 June 2015 https://clinicaltrials.gov/ct2/show/NCT02485730 and ClinicalTrials.gov Identifier:NCT02685969. Registered 19 February 2016 https://clinicaltrials.gov/ct2/show/NCT02685969.
  •  
7.
  • Bucci, Marco, et al. (författare)
  • A multisite analysis of the concordance between visual image interpretation and quantitative analysis of [18F]flutemetamol amyloid PET images
  • 2021
  • Ingår i: European Journal of Nuclear Medicine and Molecular Imaging. - : Springer Science and Business Media LLC. - 1619-7070 .- 1619-7089. ; 48:7, s. 2183-2199
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: [18F]flutemetamol PET scanning provides information on brain amyloid load and has been approved for routine clinical use based upon visual interpretation as either negative (equating to none or sparse amyloid plaques) or amyloid positive (equating to moderate or frequent plaques). Quantitation is however fundamental to the practice of nuclear medicine and hence can be used to supplement amyloid reading methodology especially in unclear cases. Methods: A total of 2770 [18F]flutemetamol images were collected from 3 clinical studies and 6 research cohorts with available visual reading of [18F]flutemetamol and quantitative analysis of images. These were assessed further to examine both the discordance and concordance between visual and quantitative imaging primarily using thresholds robustly established using pathology as the standard of truth. Scans covered a wide range of cases (i.e. from cognitively unimpaired subjects to patients attending the memory clinics). Methods of quantifying amyloid ranged from using CE/510K cleared marked software (e.g. CortexID, Brass), to other research-based methods (e.g. PMOD, CapAIBL). Additionally, the clinical follow-up of two types of discordance between visual and quantitation (V+Q- and V-Q+) was examined with competing risk regression analysis to assess possible differences in prediction for progression to Alzheimer’s disease (AD) and other diagnoses (OD). Results: Weighted mean concordance between visual and quantitation using the autopsy-derived threshold was 94% using pons as the reference region. Concordance from a sensitivity analysis which assessed the maximum agreement for each cohort using a range of cut-off values was also estimated at approximately 96% (weighted mean). Agreement was generally higher in clinical cases compared to research cases. V-Q+ discordant cases were 11% more likely to progress to AD than V+Q- for the SUVr with pons as reference region. Conclusions: Quantitation of amyloid PET shows a high agreement vs binary visual reading and also allows for a continuous measure that, in conjunction with possible discordant analysis, could be used in the future to identify possible earlier pathological deposition as well as monitor disease progression and treatment effectiveness.
  •  
8.
  • Collij, Lyduine E., et al. (författare)
  • Clinical outcomes up to 9 years after [18F]flutemetamol amyloid-PET in a symptomatic memory clinic population
  • 2023
  • Ingår i: Alzheimer's Research and Therapy. - 1758-9193. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Previous studies demonstrated increases in diagnostic confidence and change in patient management after amyloid-PET. However, studies investigating longitudinal outcomes over an extended period of time are limited. Therefore, we aimed to investigate clinical outcomes up to 9 years after amyloid-PET to support the clinical validity of the imaging technique. Methods: We analyzed longitudinal data from 200 patients (M age = 61.8, 45.5% female, M MMSE = 23.3) suspected of early-onset dementia that underwent [18F]flutemetamol-PET. Baseline amyloid status was determined through visual read (VR). Information on mortality was available with a mean follow-up of 6.7 years (range = 1.1–9.3). In a subset of 108 patients, longitudinal cognitive scores and clinical etiological diagnosis (eDx) at least 1 year after amyloid-PET acquisition were available (M = 3.06 years, range = 1.00–7.02). VR − and VR + patients were compared on mortality rates with Cox Hazard’s model, prevalence of stable eDx using chi-square test, and longitudinal cognition with linear mixed models. Neuropathological data was available for 4 patients (mean delay = 3.59 ± 1.82 years, range = 1.2–6.3). Results: At baseline, 184 (92.0%) patients were considered to have dementia. The majority of VR + patients had a primary etiological diagnosis of AD (122/128, 95.3%), while the VR − group consisted mostly of non-AD etiologies, most commonly frontotemporal lobar degeneration (30/72, 40.2%). Overall mortality rate was 48.5% and did not differ between VR − and VR + patients. eDx at follow-up was consistent with baseline diagnosis for 92/108 (85.2%) patients, with most changes observed in VR − cases (VR − = 14/35, 40% vs VR + = 2/73, 2.7%, χ 2 = 26.03, p < 0.001), who at no time received an AD diagnosis. VR + patients declined faster than VR − patients based on MMSE (β = − 1.17, p = 0.004), episodic memory (β = − 0.78, p = 0.003), fluency (β = − 1.44, p < 0.001), and attention scores (β = 16.76, p = 0.03). Amyloid-PET assessment was in line with post-mortem confirmation in all cases; two cases were VR + and showed widespread AD pathology, while the other two cases were VR − and showed limited amyloid pathology. Conclusion: In a symptomatic population, we observed that amyloid-status did not impact mortality rates, but is predictive of cognitive functioning over time across several domains. Also, we show particular validity for a negative amyloid-PET assessment, as these patients did not receive an AD diagnosis at follow-up.
  •  
9.
  • Collij, Lyduine E., et al. (författare)
  • Quantification of [18F]florbetaben amyloid-PET imaging in a mixed memory clinic population : The ABIDE project
  • 2023
  • Ingår i: Alzheimer's and Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 19:6, s. 2397-2407
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: We investigated amyloid-burden quantification in a mixed memory clinic population. Methods: [18F]Florbetaben amyloid-PET (positron emission tomography) scans of 348 patients were visually read and quantified using the Centiloid (CL) method. General linear models were used to assess CL differences across syndromic and etiological diagnosis. Linear mixed models were fitted to assess the predictive value of visual read (VR) and CL on longitudinal Mini-Mental Status Examination (MMSE). Results: CL was associated with syndromic (F = 4.42, p = 0.014) and etiological diagnosis (F = -12.66, p < 0.001), with Alzheimer's disease (AD) patients showing the highest amyloid burden (62.9 ± 27.5), followed by dementia with Lewy bodies (DLB) (25.3 ± 35.5) and cardiovascular disease (CVD) (16.7 ± 24.5), and finally frontotemporal lobe degeneration (FTLD) (5.0 ± 17.22, t = –12.66, p < 0.001). CL remained predictive of etiological diagnosis (t = –2.41, p = 0.017) within the VR+ population (N = 157). VR was not a significant predictor of MMSE (t = –1.53, p = 0.13) for the SCD population (N = 90), whereas CL was (t = -3.30, p = 0.001). Discussion: The extent of amyloid pathology through quantification holds clinical value, potentially in the context of differential diagnosis as well as prognosis.
  •  
10.
  • Collij, Lyduine E., et al. (författare)
  • Spatial-Temporal Patterns of beta-Amyloid Accumulation A Subtype and Stage Inference Model Analysis
  • 2022
  • Ingår i: Neurology. - : Ovid Technologies (Wolters Kluwer Health). - 0028-3878 .- 1526-632X. ; 98:17, s. E1692-E1703
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and Objectives beta-amyloid (A beta) staging models assume a single spatial-temporal progression of amyloid accumulation. We assessed evidence for A beta accumulation subtypes by applying the data-driven Subtype and Stage Inference (SuStaIn) model to amyloid-PET data. Methods Amyloid-PET data of 3,010 participants were pooled from 6 cohorts (ALFA+, EMIF-AD, ABIDE, OASIS, and ADNI). Standardized uptake value ratios were calculated for 17 regions. We applied the SuStaIn algorithm to identify consistent subtypes in the pooled dataset based on the cross-validation information criterion and the most probable subtype/stage classification per scan. The effects of demographics and risk factors on subtype assignment were assessed using multinomial logistic regression. Results Participants were mostly cognitively unimpaired (n = 1890 [62.8%]), had a mean age of 68.72 (SD 9.1) years, 42.1% were APOE epsilon 4 carriers, and 51.8% were female. A 1-subtype model recovered the traditional amyloid accumulation trajectory, but SuStaIn identified 3 optimal subtypes, referred to as frontal, parietal, and occipital based on the first regions to show abnormality. Of the 788 (26.2%) with strong subtype assignment (>50% probability), the majority was assigned to frontal (n = 415 [52.5%]), followed by parietal (n = 199 [25.3%]) and occipital subtypes (n = 175 [22.2%]). Significant differences across subtypes included distinct proportions of APOE epsilon 4 carriers (frontal 61.8%, parietal 57.1%, occipital 49.4%), participants with dementia (frontal 19.7%, parietal 19.1%, occipital 31.0%), and lower age for the parietal subtype (frontal/occipital 72.1 years, parietal 69.3 years). Higher amyloid (Centiloid) and CSF p-tau burden was observed for the frontal subtype; parietal and occipital subtypes did not differ. At follow-up, most participants (81.1%) maintained baseline subtype assignment and 25.6% progressed to a later stage. Discussion Whereas a 1-trajectory model recovers the established pattern of amyloid accumulation, SuStaIn determined that 3 subtypes were optimal, showing distinct associations with Alzheimer disease risk factors. Further analyses to determine clinical utility are warranted.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 28
Typ av publikation
tidskriftsartikel (26)
forskningsöversikt (2)
Typ av innehåll
refereegranskat (27)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Collij, Lyduine E. (26)
Barkhof, Frederik (18)
Gispert, Juan Doming ... (11)
Scheltens, Philip (10)
Ossenkoppele, Rik (10)
Salvadó, Gemma (8)
visa fler...
Visser, Pieter Jelle (8)
Farrar, Gill (8)
Shekari, Mahnaz (7)
Hansson, Oskar (5)
van der Flier, Wiesj ... (5)
Yaqub, Maqsood (5)
Frisoni, Giovanni B. (5)
Wink, Alle Meije (5)
Buckley, Christopher (5)
Blennow, Kaj, 1958 (4)
Bouwman, Femke (4)
Schöll, Michael, 198 ... (4)
Bollack, Ariane (4)
Garcia, David Vallez (4)
Wolz, Robin (4)
Boada, Mercè (3)
Stomrud, Erik (3)
Mattsson-Carlgren, N ... (3)
Palmqvist, Sebastian (3)
Haller, Sven (3)
Altomare, Daniele (3)
Garibotto, Valentina (3)
Windhorst, Albert D (3)
Pemberton, Hugh G. (3)
Cash, David M. (3)
Payoux, Pierre (3)
Stephens, Andrew (3)
Lemstra, Afina W. (2)
Vandenberghe, Rik (2)
Janelidze, Shorena (2)
Teunissen, Charlotte ... (2)
Ingala, Silvia (2)
Molinuevo, José Luis (2)
Grau-Rivera, Oriol (2)
Schott, Jonathan M (2)
de Geus, Eco J. C. (2)
Martínez-Lage, Pablo (2)
Ewers, Michael (2)
Nordberg, Agneta (2)
Smith, Ruben (2)
Strandberg, Olof (2)
La Joie, Renaud (2)
Marquié, Marta (2)
Gismondi, Rossella (2)
visa färre...
Lärosäte
Lunds universitet (25)
Göteborgs universitet (10)
Karolinska Institutet (9)
Uppsala universitet (2)
Umeå universitet (1)
Språk
Engelska (28)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (28)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy