SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Comte P.) "

Sökning: WFRF:(Comte P.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bastard, P, et al. (författare)
  • Preexisting autoantibodies to type I IFNs underlie critical COVID-19 pneumonia in patients with APS-1
  • 2021
  • Ingår i: The Journal of experimental medicine. - : Rockefeller University Press. - 1540-9538 .- 0022-1007. ; 218:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Patients with biallelic loss-of-function variants of AIRE suffer from autoimmune polyendocrine syndrome type-1 (APS-1) and produce a broad range of autoantibodies (auto-Abs), including circulating auto-Abs neutralizing most type I interferons (IFNs). These auto-Abs were recently reported to account for at least 10% of cases of life-threatening COVID-19 pneumonia in the general population. We report 22 APS-1 patients from 21 kindreds in seven countries, aged between 8 and 48 yr and infected with SARS-CoV-2 since February 2020. The 21 patients tested had auto-Abs neutralizing IFN-α subtypes and/or IFN-ω; one had anti–IFN-β and another anti–IFN-ε, but none had anti–IFN-κ. Strikingly, 19 patients (86%) were hospitalized for COVID-19 pneumonia, including 15 (68%) admitted to an intensive care unit, 11 (50%) who required mechanical ventilation, and four (18%) who died. Ambulatory disease in three patients (14%) was possibly accounted for by prior or early specific interventions. Preexisting auto-Abs neutralizing type I IFNs in APS-1 patients confer a very high risk of life-threatening COVID-19 pneumonia at any age.
  •  
2.
  • Agrios, Alexander George, et al. (författare)
  • Nanostructured composite films for dye-sensitized solar cells by electrostatic layer-by-layer deposition
  • 2006
  • Ingår i: Chemistry of Materials. - : American Chemical Society (ACS). - 0897-4756 .- 1520-5002. ; 18:23, s. 5395-5397
  • Tidskriftsartikel (refereegranskat)abstract
    • The possibilities for making nanocomposite semiconductor films for DSC using the ELBL method was investigated. Coated slides were cut in half vertically giving two strips that can be subjected to different treatments for comparison. The electrode was heated to 450 °C for 30 min and then Cooled to 80 °C. Scanning electron microscopy of a sintered film with 5 cycles of TiO2 nanoparticles shows that the particles are well distributed and completely cover the transparent conducting oxide substrate. Spectroscopic measurements of a dye-coated film in acetonitrile found a dye concentration within the film of 0.15 mM based on an extinction coefficient. The solar cell including a scattering layer had more than double the current of the transparent layer-only cell. It was observed that ELBL method can produce TiO2 films for DSC with high efficiencies at low thickness.
  •  
3.
  • Kuang, Daibin, et al. (författare)
  • Stable dye-sensitized solar cells based on organic chromophores and ionic liquid electrolyte
  • 2011
  • Ingår i: Solar Energy. - : Elsevier BV. - 0038-092X .- 1471-1257. ; 85:6, s. 1189-1194
  • Tidskriftsartikel (refereegranskat)abstract
    • A series of polyene-diphenylaniline based organic dyes (coded as D5, D7, D9 and D11) have been reported for the application in ionic liquid electrolyte based dye-sensitized solar cells. The effects of substitution of organic dyes on the photovoltaic performance have been investigated, which show addition of methoxy groups on the triphenylamine donor group increases short-circuit current, open-circuit voltage and photovoltaic performance. A power conversion efficiency of 6.5% under AM 1.5 sunlight at 100 mW/cm(2) has been obtained with D11 dye in combination with a binary ionic liquid electrolyte, which when subjected to accelerated testing under one sun light soaking at 60 degrees C, the efficiency remained 90% of initial efficiency.
  •  
4.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy