SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Conca Dario) "

Sökning: WFRF:(Conca Dario)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Becker, Miriam, et al. (författare)
  • Efficient clathrin-mediated entry of enteric adenoviruses in human duodenal cells
  • 2023
  • Ingår i: Journal of Virology. - 0022-538X .- 1098-5514. ; 97:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Enteric adenovirus types F40 and 41 (EAdVs) are a leading cause of diarrhea and diarrhea-associated death in young children and have recently been proposed to cause acute hepatitis in children. EAdVs have a unique capsid architecture and exhibit — unlike other human adenoviruses — a relatively strict tropism for gastrointestinal tissues with, to date, understudied infection mechanism and unknown target cells. In this study, we turn to potentially limiting host factors by comparing EAdV entry in cell lines with respiratory and intestinal origin by cellular perturbation, virus particle tracking, and transmission electron microscopy. Our analyses highlight kinetic advantages for EAdVs in duodenal HuTu80 cell infection and reveal a larger fraction of mobile particles, faster virus uptake, and infectious particle entry in intestinal cells. Moreover, EAdVs display a dependence on clathrin- and dynamin-dependent pathways in intestinal cells. Detailed knowledge of virus entry routes and host factor requirements is essential to understanding pathogenesis and developing new countermeasures. Hence, this study provides novel insights into the entry mechanisms of a medically important virus with emerging tropism in a cell line originating from a relevant tissue. IMPORTANCE Enteric adenoviruses have historically been difficult to grow in cell culture, which has resulted in lack of knowledge of host factors and pathways required for infection of these medically relevant viruses. Previous studies in non-intestinal cell lines showed slow infection kinetics and generated comparatively low virus yields compared to other adenovirus types. We suggest duodenum-derived HuTu80 cells as a superior cell line for studies to complement efforts using complex intestinal tissue models. We show that viral host cell factors required for virus entry differ between cell lines from distinct origins and demonstrate the importance of clathrin-mediated endocytosis.
  •  
2.
  •  
3.
  • Conca, Dario Valter, et al. (författare)
  • The role of membrane complexity in the early entry stages of SARS-CoV-2 variants
  • 2023
  • Ingår i: European Biophysics Journal. - 1432-1017 .- 0175-7571. ; 52:SUPPL 1, s. S176-S176
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • The highest density of mutations in SARS-CoV-2 variants is located on the spike glycoprotein (S), which is responsible for receptor ACE2 engagement. This suggests that SARS-CoV-2 is evolving to optimize viral entry. Several molecular studies report differences in the affinity between isolated S and ACE2 among variants. However, overall ACE2 affinity poorly correlates with the increased infectivity of recent variants. We address this discrepancy by considering the virus interaction with the whole plasma membrane and study the role of avidity and membrane complexity in modulating virus-host binding. To this end, we employ an in-vitro model system combining single-particle tracking and native supported lipid bilayers (nSLBs) made from lung epithelial cells. As virion mimics, we developed S-decorated liposomes that allow for direct comparison between variants and BSL-1 handling. Sliposome interaction with nSLBs showed a significant increase in avidity for Omicron compared to Delta and Wuhan strains. Further, using single-molecule force spectroscopy, we reveal a higher affinity for Omicron and Delta S to sensor immobilise heparan sulfate (HS). Our results indicate a shift in the variants’ attachment strategy towards more efficient use of coreceptors and the role of HS as an initial docking site that facilitates virus accumulation at the membrane and ACE2 engagement.
  •  
4.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy