SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Conlan Wayne) "

Sökning: WFRF:(Conlan Wayne)

  • Resultat 1-10 av 21
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Binesse, Johan, et al. (författare)
  • Roles of Reactive Oxygen Species-Degrading Enzymes of Francisella tularensis SCHU S4
  • 2015
  • Ingår i: Infection and Immunity. - 0019-9567 .- 1098-5522. ; 83:6, s. 2255-2263
  • Tidskriftsartikel (refereegranskat)abstract
    • Francisella tularensis is a facultative intracellular bacterium utilizing macrophages as its primary intracellular habitat and is therefore highly capable of resisting the effects of reactive oxygen species (ROS), potent mediators of the bactericidal activity of macrophages. We investigated the roles of enzymes presumed to be important for protection against ROS. Four mutants of the highly virulent SCHU S4 strain with deletions of the genes encoding catalase (katG), glutathione peroxidase (gpx), a DyP-type peroxidase (FTT0086), or double deletion of FTT0086 and katG showed much increased susceptibility to hydrogen peroxide (H2O2) and slightly increased susceptibility to paraquat but not to peroxynitrite (ONOO-) and displayed intact intramacrophage replication. Nevertheless, mice infected with the double deletion mutant showed significantly longer survival than SCHU S4-infected mice. Unlike the aforementioned mutants, deletion of the gene coding for alkyl-hydroperoxide reductase subunit C (ahpC) generated a mutant much more susceptible to paraquat and ONOO- but not to H2O2. It showed intact replication in J774 cells but impaired replication in bone marrow-derived macrophages and in internal organs of mice. The live vaccine strain, LVS, is more susceptible than virulent strains to ROS-mediated killing and possesses a truncated form of FTT0086. Expression of the SCHU S4 FTT0086 gene rendered LVS more resistant to H2O2, which demonstrates that the SCHU S4 strain possesses additional detoxifying mechanisms. Collectively, the results demonstrate that SCHU S4 ROS-detoxifying enzymes have overlapping functions, and therefore, deletion of one or the other does not critically impair the intracellular replication or virulence, although AhpC appears to have a unique function.
  •  
4.
  • Conlan, J Wayne, et al. (författare)
  • Differential ability of novel attenuated targeted deletion mutants of Francisella tularensis subspecies tularensis strain SCHU S4 to protect mice against aerosol challenge with virulent bacteria : effects of host background and route of immunization
  • 2010
  • Ingår i: Vaccine. - : Elsevier BV. - 0264-410X .- 1873-2518. ; 28:7, s. 1824-1831
  • Tidskriftsartikel (refereegranskat)abstract
    • Francisella tularensis subspecies tularensis is a highly virulent facultative intracellular pathogen of humans and a potential biological weapon. A live vaccine strain, F. tularensis LVS, was developed more than 50 years ago by pragmatic attenuation of a strain of the less virulent holarctica subspecies. LVS was demonstrated to be highly effective in human volunteers who were exposed to intradermal challenge with fully virulent subsp. tularensis, but was less effective against aerosol exposure. LVS faces regulatory hurdles that to date have prevented its licensure for general use. Therefore, a better defined and more effective vaccine is being sought. To this end we have created gene deletion mutants in the virulent subsp. tularensis strain and tested them for their ability to elicit a protective immune response against systemic or aerosol challenge with the highly virulent wild-type subsp. tularensis strain, SCHU S4. Both oral and intradermal (ID) primary vaccination routes were assessed in BALB/c and C3H/HeN mice as was oral boosting. One SCHU S4 mutant missing the heat shock gene, clpB, was significantly more attenuated than LVS whereas a double deletion mutant missing genes FTT0918 and capB was as attenuated as LVS. In general mice immunized with SCHU S4DeltaclpB were significantly better protected against aerosol challenge than mice immunized with LVS. A single ID immunization of BALB/c mice with SCHU S4DeltaclpB was at least as effective as any other regimen examined. Mice immunized with SCHU S4Delta0918DeltacapB were generally protected to a similar degree as mice immunized with LVS. A preliminary examination of immune responses to vaccination with LVS, SCHU S4DeltaclpB, or SCHU S4Delta0918DeltacapB provided no obvious correlate to their relative efficacies.
  •  
5.
  • Conlan, J. Wayne, et al. (författare)
  • Modern Development and Production of a New Live Attenuated Bacterial Vaccine, SCHU S4 Delta clpB, to Prevent Tularemia
  • 2021
  • Ingår i: Pathogens. - : MDPI. - 2076-0817. ; 10:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Inhalation of small numbers of Francisella tularensis subspecies tularensis (Ftt) in the form of small particle aerosols causes severe morbidity and mortality in people and many animal species. For this reason, Ftt was developed into a bona fide biological weapon by the USA, by the former USSR, and their respective allies during the previous century. Although such weapons were never deployed, the 9/11 attack quickly followed by the Amerithrax attack led the U.S. government to seek novel countermeasures against a select group of pathogens, including Ftt. Between 2005-2009, we pursued a novel live vaccine against Ftt by deleting putative virulence genes from a fully virulent strain of the pathogen, SCHU S4. These mutants were screened in a mouse model, in which the vaccine candidates were first administered intradermally (ID) to determine their degree of attenuation. Subsequently, mice that survived a high dose ID inoculation were challenged by aerosol or intranasally (IN) with virulent strains of Ftt. We used the current unlicensed live vaccine strain (LVS), first discovered over 70 years ago, as a comparator in the same model. After screening 60 mutants, we found only one, SCHU S4 Delta clpB, that outperformed LVS in the mouse ID vaccination-respiratory-challenge model. Currently, SCHU S4 Delta clpB has been manufactured under current good manufacturing practice conditions, and tested for safety and efficacy in mice, rats, and macaques. The steps necessary for advancing SCHU S4 Delta clpB to this late stage of development are detailed herein. These include developing a body of data supporting the attenuation of SCHU S4 Delta clpB to a degree sufficient for removal from the U.S. Select Agent list and for human use; optimizing SCHU S4 Delta clpB vaccine production, scale up, and long-term storage; and developing appropriate quality control testing approaches.
  •  
6.
  • Conlan, J Wayne, et al. (författare)
  • Molecular immunology of experimental primary tularemia in mice infected by respiratory or intradermal routes with type A Francisella tularensis.
  • 2008
  • Ingår i: Molecular Immunology. - : Elsevier BV. - 0161-5890 .- 1872-9142. ; 45:10, s. 2962-2969
  • Tidskriftsartikel (refereegranskat)abstract
    • The type A subspecies of Francisella tularensis is a highly virulent facultative intracellular bacterial pathogen, and a potential biological weapon. Recently, there has been renewed interest in developing new vaccines and therapeutics against this bacterium. Natural cases of disease, tularemia, caused by the type A subspecies are very rare. Therefore, the United States Food and Drug Administration will rely on the so-called Animal Rule for efficacy testing of anti-Francisella medicines. This requires the human disease to be modeled in one or more animal species in which the pathogenicity of the agent is reasonably well understood. Mice are natural hosts for F. tularensis, and might be able to satisfy this requirement. Tularemia pathogenesis appears to be primarily due to the host inflammatory response which is poorly understood at the molecular level. Additionally, the extent to which this response varies depending on host and pathogen genetic background, or by pathogen challenge route or dose is unknown. Therefore, the present study examined sera and infected tissues from C57BL/6 and BALB/c mice challenged by natural intradermal (ID) and respiratory routes with one of two distinct type A strains of the pathogen for cytokine and chemokine responses that might help to explain the morbidity associated with tularemia. The results show that the molecular immune response was mostly similar regardless of the variables examined. For instance, mRNA for the proinflammatory cytokine IL-6, and chemokines KC, and IP-10 was consistently upregulated at all sites of infection. Upregulation of mRNA for several other cytokines and chemokines occurred in a more tissue restricted manner. For instance, IFN-gamma was highly upregulated in the skin of BALB/c, but not C57BL/6 mice after ID inoculation of the pathogen, whilst IL-10 mRNA upregulation was only consistently seen in the skin and lungs.
  •  
7.
  • Golovlev, Igor, et al. (författare)
  • A Delta clpB Mutant of Francisella tularensis Subspecies holarctica Strain, FSC200, Is a More Effective Live Vaccine than F. tularensis LVS in a Mouse Respiratory Challenge Model of Tularemia
  • 2013
  • Ingår i: PLOS ONE. - : Public Library of Science. - 1932-6203. ; 8:11, s. e78671-
  • Tidskriftsartikel (refereegranskat)abstract
    • Francisella tularensis subsp. tularensis is a highly virulent pathogen for humans especially if inhaled. Consequently, it is considered to be a potential biothreat agent. An experimental vaccine, F. tularensis live vaccine strain, derived from the less virulent subsp. holarctica, was developed more than 50 years ago, but remains unlicensed. Previously, we developed a novel live vaccine strain, by deleting the chaperonin clpB gene from F. tularensis subsp. tularensis strain, SCHU S4. SCHU S4 Delta clpB was less virulent for mice than LVS and a more effective vaccine against respiratory challenge with wild type SCHU S4. In the current study, we were interested to determine whether a similar mutant on the less virulent subsp. holarctica background would also outperform LVS in terms of safety and efficacy. To this end, clpB was deleted from clinical holarctica strain, FSC200. FSC200 Delta clpB had a significantly higher intranasal LD50 than LVS for BALB/c mice, but replicated to higher numbers at foci of infection after dermal inoculation. Moreover, FSC200 Delta clpB killed SCID mice more rapidly than LVS. However, dermal vaccination of BALB/c mice with the former versus the latter induced greater protection against respiratory challenge with SCHU S4. This increased efficacy was associated with enhanced production of pulmonary IL-17 after SCHU S4 challenge.
  •  
8.
  • Golovliov, Igor, et al. (författare)
  • An In Vitro Co-culture Mouse Model Demonstrates Efficient Vaccine-Mediated Control of Francisella tularensis SCHU S4 and Identifies Nitric Oxide as a Predictor of Efficacy
  • 2016
  • Ingår i: Frontiers in Cellular and Infection Microbiology. - : Frontiers Media SA. - 2235-2988. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Francisella tularensis is a highly virulent intracellular bacterium and cell-mediated immunity is critical for protection, but mechanisms of protection against highly virulent variants, such as the prototypic strain F. tularensis strain SCHU S4, are poorly understood. To this end, we established a co-culture system, based on splenocytes from naive, or immunized mice and in vitro infected bone marrow-derived macrophages that allowed assessment of mechanisms controlling infection with F. tularensis. We utilized the system to understand why the clpB gene deletion mutant, Delta clpB, of SCHU S4 shows superior efficacy as a vaccine in the mouse model as compared to the existing human vaccine, the live vaccine strain (LVS). Compared to naive splenocytes, Delta clpB-, or LVS-immune splenocytes conferred very significant control of a SCHU S4 infection and the Delta clpB-immune splenocytes were superior to the LVS-immune splenocytes. Cultures with the Delta clpB-immune splenocytes also contained higher levels of IFN-gamma, IL-17, and GM-CSF and nitric oxide, and T cells expressing combinations of IFN-gamma, TNF-alpha, and IL-17, than did cultures with LVS-immune splenocytes. There was strong inverse correlation between bacterial replication and levels of nitrite, an end product of nitric oxide, and essentially no control was observed when BMDM from iNOS(-/-) mice were infected. Collectively, the co-culture model identified a critical role of nitric oxide for protection against a highly virulent strain of F. tularensis.
  •  
9.
  •  
10.
  • Kadzhaev, Konstantin, et al. (författare)
  • Identification of genes contributing to the virulence of Francisella tularensis SCHU S4 in a mouse intradermal infection model
  • 2009
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 4:5, s. e5463-
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Francisella tularensis is a highly virulent human pathogen. The most virulent strains belong to subspecies tularensis and these strains cause a sometimes fatal disease. Despite an intense recent research effort, there is very limited information available that explains the unique features of subspecies tularensis strains that distinguish them from other F. tularensis strains and that explain their high virulence. Here we report the use of targeted mutagenesis to investigate the roles of various genes or pathways for the virulence of strain SCHU S4, the type strain of subspecies tularensis.METHODOLOGY/PRINCIPAL FINDINGS: The virulence of SCHU S4 mutants was assessed by following the outcome of infection after intradermal administration of graded doses of bacteria. By this route, the LD(50) of the SCHU S4 strain is one CFU. The virulence of 20 in-frame deletion mutants and 37 transposon mutants was assessed. A majority of the mutants did not show increased prolonged time to death, among them notably Delta pyrB and Delta recA. Of the remaining, mutations in six unique targets, tolC, rep, FTT0609, FTT1149c, ahpC, and hfq resulted in significantly prolonged time to death and mutations in nine targets, rplA, wbtI, iglB, iglD, purL, purF, ggt, kdtA, and glpX, led to marked attenuation with an LD(50) of > 10(3) CFU. In fact, the latter seven mutants showed very marked attenuation with an LD(50) of > or = 10(7) CFU.CONCLUSIONS/SIGNIFICANCE: The results demonstrate that the characterization of targeted mutants yielded important information about essential virulence determinants that will help to identify the so far little understood extreme virulence of F. tularensis subspecies tularensis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 21

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy