SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Conti Marta) "

Sökning: WFRF:(Conti Marta)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Biurrun, Idoia, et al. (författare)
  • Benchmarking plant diversity of Palaearctic grasslands and other open habitats
  • 2021
  • Ingår i: Journal of Vegetation Science. - Oxford : John Wiley & Sons. - 1100-9233 .- 1654-1103. ; 32:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Journal of Vegetation Science published by John Wiley & Sons Ltd on behalf of International Association for Vegetation Science.Aims: Understanding fine-grain diversity patterns across large spatial extents is fundamental for macroecological research and biodiversity conservation. Using the GrassPlot database, we provide benchmarks of fine-grain richness values of Palaearctic open habitats for vascular plants, bryophytes, lichens and complete vegetation (i.e., the sum of the former three groups). Location: Palaearctic biogeographic realm. Methods: We used 126,524 plots of eight standard grain sizes from the GrassPlot database: 0.0001, 0.001, 0.01, 0.1, 1, 10, 100 and 1,000 m2 and calculated the mean richness and standard deviations, as well as maximum, minimum, median, and first and third quartiles for each combination of grain size, taxonomic group, biome, region, vegetation type and phytosociological class. Results: Patterns of plant diversity in vegetation types and biomes differ across grain sizes and taxonomic groups. Overall, secondary (mostly semi-natural) grasslands and natural grasslands are the richest vegetation type. The open-access file ”GrassPlot Diversity Benchmarks” and the web tool “GrassPlot Diversity Explorer” are now available online (https://edgg.org/databases/GrasslandDiversityExplorer) and provide more insights into species richness patterns in the Palaearctic open habitats. Conclusions: The GrassPlot Diversity Benchmarks provide high-quality data on species richness in open habitat types across the Palaearctic. These benchmark data can be used in vegetation ecology, macroecology, biodiversity conservation and data quality checking. While the amount of data in the underlying GrassPlot database and their spatial coverage are smaller than in other extensive vegetation-plot databases, species recordings in GrassPlot are on average more complete, making it a valuable complementary data source in macroecology. © 2021 The Authors.
  •  
2.
  • Dengler, Juergen, et al. (författare)
  • GrassPlot - a database of multi-scale plant diversity in Palaearctic grasslands
  • 2018
  • Ingår i: Phytocoenologia. - : Schweizerbart. - 0340-269X. ; 48:3, s. 331-347
  • Tidskriftsartikel (refereegranskat)abstract
    • GrassPlot is a collaborative vegetation-plot database organised by the Eurasian Dry Grassland Group (EDGG) and listed in the Global Index of Vegetation-Plot Databases (GIVD ID EU-00-003). GrassPlot collects plot records (releves) from grasslands and other open habitats of the Palaearctic biogeographic realm. It focuses on precisely delimited plots of eight standard grain sizes (0.0001; 0.001;... 1,000 m(2)) and on nested-plot series with at least four different grain sizes. The usage of GrassPlot is regulated through Bylaws that intend to balance the interests of data contributors and data users. The current version (v. 1.00) contains data for approximately 170,000 plots of different sizes and 2,800 nested-plot series. The key components are richness data and metadata. However, most included datasets also encompass compositional data. About 14,000 plots have near-complete records of terricolous bryophytes and lichens in addition to vascular plants. At present, GrassPlot contains data from 36 countries throughout the Palaearctic, spread across elevational gradients and major grassland types. GrassPlot with its multi-scale and multi-taxon focus complements the larger international vegetationplot databases, such as the European Vegetation Archive (EVA) and the global database " sPlot". Its main aim is to facilitate studies on the scale-and taxon-dependency of biodiversity patterns and drivers along macroecological gradients. GrassPlot is a dynamic database and will expand through new data collection coordinated by the elected Governing Board. We invite researchers with suitable data to join GrassPlot. Researchers with project ideas addressable with GrassPlot data are welcome to submit proposals to the Governing Board.
  •  
3.
  • Ostaszewski, Marek, et al. (författare)
  • COVID19 Disease Map, a computational knowledge repository of virus-host interaction mechanisms
  • 2021
  • Ingår i: Molecular Systems Biology. - : John Wiley & Sons. - 1744-4292 .- 1744-4292. ; 17:10
  • Tidskriftsartikel (refereegranskat)abstract
    • We need to effectively combine the knowledge from surging literature with complex datasets to propose mechanistic models of SARS-CoV-2 infection, improving data interpretation and predicting key targets of intervention. Here, we describe a large-scale community effort to build an open access, interoperable and computable repository of COVID-19 molecular mechanisms. The COVID-19 Disease Map (C19DMap) is a graphical, interactive representation of disease-relevant molecular mechanisms linking many knowledge sources. Notably, it is a computational resource for graph-based analyses and disease modelling. To this end, we established a framework of tools, platforms and guidelines necessary for a multifaceted community of biocurators, domain experts, bioinformaticians and computational biologists. The diagrams of the C19DMap, curated from the literature, are integrated with relevant interaction and text mining databases. We demonstrate the application of network analysis and modelling approaches by concrete examples to highlight new testable hypotheses. This framework helps to find signatures of SARS-CoV-2 predisposition, treatment response or prioritisation of drug candidates. Such an approach may help deal with new waves of COVID-19 or similar pandemics in the long-term perspective.
  •  
4.
  • Himmerich, Hubertus, et al. (författare)
  • World Federation of Societies of Biological Psychiatry (WFSBP) guidelines update 2023 on the pharmacological treatment of eating disorders
  • 2023
  • Ingår i: World Journal of Biological Psychiatry. - : Taylor & Francis. - 1562-2975 .- 1814-1412. ; 24:8, s. 643-706
  • Forskningsöversikt (refereegranskat)abstract
    • Objectives: This 2023 update of the WFSBP guidelines for the pharmacological treatment of eating disorders (EDs) reflects the latest diagnostic and psychopharmacological progress and the improved WFSBP recommendations for the assessment of the level of evidence (LoE) and the grade of recommendation (GoR).Methods: The WFSBP Task Force EDs reviewed the relevant literature and provided a timely grading of the LoE and the GoR.Results: In anorexia nervosa (AN), only a limited recommendation (LoE: A; GoR: 2) for olanzapine can be given, because the available evidence is restricted to weight gain, and its effect on psychopathology is less clear. In bulimia nervosa (BN), the current literature prompts a recommendation for fluoxetine (LoE: A; GoR: 1) or topiramate (LoE: A; GoR: 1). In binge-eating disorder (BED), lisdexamfetamine (LDX; LoE: A; GoR: 1) or topiramate (LoE: A; GoR: 1) can be recommended. There is only sparse evidence for the drug treatment of avoidant restrictive food intake disorder (ARFID), pica, and rumination disorder (RD).Conclusion: In BN, fluoxetine, and topiramate, and in BED, LDX and topiramate can be recommended. Despite the published evidence, olanzapine and topiramate have not received marketing authorisation for use in EDs from any medicine regulatory agency.
  •  
5.
  • Kattge, Jens, et al. (författare)
  • TRY plant trait database - enhanced coverage and open access
  • 2020
  • Ingår i: Global Change Biology. - : Wiley-Blackwell. - 1354-1013 .- 1365-2486. ; 26:1, s. 119-188
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.
  •  
6.
  •  
7.
  • Rivera-Ferre, Marta G., et al. (författare)
  • A vision for transdisciplinarity in Future Earth : Perspectives from young researchers
  • 2013
  • Ingår i: The Journal of Agriculture, Food Systems, and Community Development. - : New Leaf Associates, Inc.. - 2152-0798 .- 2152-0801. ; 3:4, s. 249-260
  • Tidskriftsartikel (refereegranskat)abstract
    • Meeting the demand for food, energy, and water as world population increases is a major goal for the food systems of the future. These future challenges, which are complex, multiscalar, and cross-sectoral in nature, require a food systems approach that recognizes the socio-ecological and socio-technical dimensions of food (Ericksen, 2008; Ingram, 2011; Rivera-Ferre, 2012). The United Nations' Future Earth Program aims to provide a new platform for consolidating the knowledge required for societies to transition to global sustainability (Future Earth Transition Team, 2012). In this paper, we explore how Future Earth could become a vehicle for inspiring the production of new research ideas and collaborations for sustainably transforming the future food system. We do this on the basis of a synthesis of views from 28 young (below 40 years old) food system scientists, representing five continents. Their expertise comes from disciplines including food engineering, agronomy, ecology, geography, psychology, public health, food politics, nutritional science, political science, sociology and sustainability science. This paper begins with an outline of the institutional framework of Future Earth and how it might support innovative transdisciplinary research on food systems, and the position of young scientists within this framework. Secondly, we outline the key insights expressed by the young scientists during the Food Futures Conference in Villa Vigoni, Italy, in April 2013, including the core research questions raised during the meeting as well as some of the challenges involved in realizing their research ambitions within their professional spheres. 
  •  
8.
  • Sampson, Joshua N., et al. (författare)
  • Analysis of Heritability and Shared Heritability Based on Genome-Wide Association Studies for 13 Cancer Types
  • 2015
  • Ingår i: Journal of the National Cancer Institute. - : Oxford University Press (OUP). - 0027-8874 .- 1460-2105. ; 107:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Studies of related individuals have consistently demonstrated notable familial aggregation of cancer. We aim to estimate the heritability and genetic correlation attributable to the additive effects of common single-nucleotide polymorphisms (SNPs) for cancer at 13 anatomical sites. Methods: Between 2007 and 2014, the US National Cancer Institute has generated data from genome-wide association studies (GWAS) for 49 492 cancer case patients and 34 131 control patients. We apply novel mixed model methodology (GCTA) to this GWAS data to estimate the heritability of individual cancers, as well as the proportion of heritability attributable to cigarette smoking in smoking-related cancers, and the genetic correlation between pairs of cancers. Results: GWAS heritability was statistically significant at nearly all sites, with the estimates of array-based heritability, h(l)(2), on the liability threshold (LT) scale ranging from 0.05 to 0.38. Estimating the combined heritability of multiple smoking characteristics, we calculate that at least 24% (95% confidence interval [CI] = 14% to 37%) and 7% (95% CI = 4% to 11%) of the heritability for lung and bladder cancer, respectively, can be attributed to genetic determinants of smoking. Most pairs of cancers studied did not show evidence of strong genetic correlation. We found only four pairs of cancers with marginally statistically significant correlations, specifically kidney and testes (rho = 0.73, SE = 0.28), diffuse large B-cell lymphoma (DLBCL) and pediatric osteosarcoma (rho = 0.53, SE = 0.21), DLBCL and chronic lymphocytic leukemia (CLL) (rho = 0.51, SE = 0.18), and bladder and lung (rho = 0.35, SE = 0.14). Correlation analysis also indicates that the genetic architecture of lung cancer differs between a smoking population of European ancestry and a nonsmoking Asian population, allowing for the possibility that the genetic etiology for the same disease can vary by population and environmental exposures. Conclusion: Our results provide important insights into the genetic architecture of cancers and suggest new avenues for investigation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8
Typ av publikation
tidskriftsartikel (7)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (8)
Författare/redaktör
Pakeman, Robin J. (3)
Jentsch, Anke (3)
Bruun, Hans Henrik (3)
Vrieling, Anton (2)
Ummenhofer, Caroline ... (2)
De Frenne, Pieter (2)
visa fler...
Diekmann, Martin (2)
Pereira, Laura (2)
Prentice, Honor C (2)
Pielech, Remigiusz (2)
Boch, Steffen (2)
Wang, Yun (2)
Becker, Thomas (2)
Hajek, Michal (2)
Natcheva, Rayna (2)
Bergamini, Ariel (2)
Biurrun, Idoia (2)
Dembicz, Iwona (2)
Gillet, François (2)
Kozub, Łukasz (2)
Marcenò, Corrado (2)
Reitalu, Triin (2)
Van Meerbeek, Koenra ... (2)
Guarino, Riccardo (2)
Chytrý, Milan (2)
Axmanová, Irena (2)
Burrascano, Sabina (2)
Bartha, Sándor (2)
Conradi, Timo (2)
Filibeck, Goffredo (2)
Jiménez-Alfaro, Borj ... (2)
Kuzemko, Anna (2)
Molnár, Zsolt (2)
Roleček, Jan (2)
Sutcliffe, Laura M. ... (2)
Terzi, Massimo (2)
Winkler, Manuela (2)
Aćić, Svetlana (2)
Acosta, Alicia T. R. (2)
Akasaka, Munemitsu (2)
Apostolova, Iva (2)
Baumann, Esther (2)
Belonovskaya, Elena (2)
Benito Alonso, José ... (2)
Berastegi, Asun (2)
Bonini, Ilaria (2)
Budzhak, Vasyl (2)
Bueno, Álvaro (2)
Campos, Juan Antonio (2)
Cancellieri, Laura (2)
visa färre...
Lärosäte
Uppsala universitet (3)
Umeå universitet (2)
Kungliga Tekniska Högskolan (2)
Stockholms universitet (2)
Lunds universitet (2)
Göteborgs universitet (1)
visa fler...
Högskolan i Halmstad (1)
Högskolan i Gävle (1)
Linköpings universitet (1)
Karlstads universitet (1)
Karolinska Institutet (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (8)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (4)
Medicin och hälsovetenskap (2)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy