SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Corciulo Carmen) "

Sökning: WFRF:(Corciulo Carmen)

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Barrett, Aidan, et al. (författare)
  • Physiological estrogen levels are dispensable for the sex difference in immune responses during allergen-induced airway inflammation
  • 2023
  • Ingår i: Immunobiology. - : Elsevier BV. - 0171-2985. ; 228:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Women show an increased prevalence of adult-onset asthma compared to men and previous studies have shown that testosterone inhibits while estrogen worsens allergen-induced airway inflammation. However, detailed knowledge about the aggravating effects of estrogen on immune responses remain unclear. Defining the effects of physiological levels of estrogen on immune responses in asthma would aid in the development of improved treatment strategies.In this study, the importance of estrogen for the sex difference in asthma was determined using a murine model of house dust mite (HDM)-induced airway inflammation on intact female and male mice, as well as on ovariectomized (OVX) female mice treated with a physiological dose of 17 beta-estradiol (E2). Innate and adaptive immune responses were defined in bronchoalveolar lavage fluid, mediastinal lymph node (mLN) and lung tissue.The results reveal increased numbers of lung eosinophils, macrophages, and dendritic cells in female but not in male mice after HDM challenge. Females also exhibit higher numbers of Th17 cells in both mLN and lung in response to HDM. However, treatment of OVX mice with physiological levels of E2 does not influence any of the analyzed cell populations.Together, this study confirms the previously reported sex difference in allergen-induced airway inflammation and show that female mice mount stronger innate and adaptive immune responses to HDM challenge, but these effects are not mediated by physiological levels of E2.
  •  
2.
  • Barrett, Aidan, et al. (författare)
  • Role of estrogen signaling in fibroblastic reticular cells for innate and adaptive immune responses in antigen-induced arthritis
  • 2024
  • Ingår i: IMMUNOLOGY AND CELL BIOLOGY. - 0818-9641 .- 1440-1711.
  • Tidskriftsartikel (refereegranskat)abstract
    • Women are more prone to develop rheumatoid arthritis, with peak incidence occurring around menopause. Estrogen has major effects on the immune system and is protective against arthritis. We have previously shown that treatment with estrogen inhibits inflammation and joint destruction in murine models of arthritis, although the mechanisms involved remain unclear. Fibroblastic reticular cells (FRCs) are specialized stromal cells that generate the three-dimensional structure of lymph nodes (LNs). FRCs are vital for coordinating immune responses from within LNs and are characterized by the expression of the chemokine CCL19, which attracts immune cells. The aim of this study was to determine whether the influence of estrogen on innate and adaptive immune cells in arthritis is mediated by estrogen signaling in FRCs. Conditional knockout mice lacking estrogen receptor alpha (ER alpha) in CCL19-expressing cells (Ccl19-CreER alpha fl/fl) were generated and tested. Ccl19-CreER alpha fl/fl mice and littermate controls were ovariectomized, treated with vehicle or estradiol and subjected to the 28-day-long antigen-induced arthritis model to enable analyses of differentiated T- and B-cell populations and innate cells in LNs by flow cytometry. The results reveal that while the response to estradiol treatment in numbers of FRCs per LN is significantly reduced in mice lacking ER alpha in FRCs, estrogen does not inhibit joint inflammation or markedly affect immune responses in this arthritis model. Thus, this study validates the Ccl19-CreER alpha fl/fl strain for studying estrogen signaling in FRCs within inflammatory diseases, although the chosen arthritis model is deemed unsuitable for addressing this question. This study investigated the influence of signaling through estrogen receptor alpha (ER alpha) in fibroblastic reticular cells (FRCs) on innate and adaptive immune responses using a mouse model where ER alpha was conditionally deleted in CCL19-expressing cells. The results reveal that the deletion of ER alpha in FRCs does not affect the FRC phenotype or LN architecture at steady state while the response of FRCs to estrogen treatment during experimental arthritis is significantly reduced in the conditional knock-out mice. However, ER alpha signaling via FRCs does not inhibit joint inflammation or markedly affect immune responses in the antigen-induced arthritis model. image
  •  
3.
  • Boberg, Emma, et al. (författare)
  • Rapamycin Dampens Inflammatory Properties of Bone Marrow ILC2s in IL-33-Induced Eosinophilic Airway Inflammation
  • 2022
  • Ingår i: Frontiers in Immunology. - : Frontiers Media SA. - 1664-3224. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • The alarmin cytokine interleukin (IL)-33 plays an important proinflammatory role in type 2 immunity and can act on type 2 innate lymphoid cells (ILC2s) and type 2 T helper (T(H)2) cells in eosinophilic inflammation and asthma. The mechanistic target of rapamycin (mTOR) signaling pathway drives immune responses in several inflammatory diseases, but its role in regulating bone marrow responses to IL-33 is unclear. The aim of this study was to determine the role of the mTORC1 signaling pathway in IL-33-induced bone marrow ILC2 responses and its impact on IL-33-induced eosinophilia. Wild-type mice were intranasally exposed to IL-33 only or in combination with the mTORC1 inhibitor, rapamycin, intraperitoneally. Four groups were included in the study: saline-treated (PBS)+PBS, rapamycin+PBS, PBS+IL-33 and rapamycin+IL-33. Bronchoalveolar lavage fluid (BALF), serum and bone marrow cells were collected and analyzed by differential cell count, enzyme-linked immunosorbent assay and flow cytometry. IL-33 induced phosphorylation of the mTORC1 protein rpS6 in bone marrow ILC2s both ex vivo and in vivo. The observed mTOR signal was reduced by rapamycin treatment, indicating the sensitivity of bone marrow ILC2s to mTORC1 inhibition. IL-5 production by ILC2s was reduced in cultures treated with rapamycin before stimulation with IL-33 compared to IL-33 only. Bone marrow and airway eosinophils were reduced in mice given rapamycin before IL-33-exposure compared to mice given IL-33 only. Bone marrow ILC2s responded to IL-33 in vivo with increased mTORC1 activity and rapamycin treatment successfully decreased IL-33-induced eosinophilic inflammation, possibly by inhibition of IL-5-producing bone marrow ILC2s. These findings highlight the importance of investigating specific cells and proinflammatory pathways as potential drivers of inflammatory diseases, including asthma.
  •  
4.
  • Castro, C. M., et al. (författare)
  • Adenosine A2A receptor null chondrocyte transcriptome resembles that of human osteoarthritic chondrocytes
  • 2021
  • Ingår i: Purinergic Signalling. - : Springer Science and Business Media LLC. - 1573-9538 .- 1573-9546. ; 17, s. 439-448
  • Tidskriftsartikel (refereegranskat)abstract
    • Adenosine signaling plays a critical role in the maintenance of articular cartilage and may serve as a novel therapeutic for osteoarthritis (OA), a highly prevalent and morbid disease without effective therapeutics in the current market. Mice lacking adenosine A2A receptors (A2AR) develop spontaneous OA by 16 weeks of age, a finding relevant to human OA since loss of adenosine signaling due to diminished adenosine production (NT5E deficiency) also leads to development of OA in mice and humans. To better understand the mechanism by which A2AR and adenosine generation protect from OA development, we examined differential gene expression in neonatal chondrocytes from WT and A2AR null mice. Analysis of differentially expressed genes was analyzed by KEGG pathway analysis, and oPOSSUM and the flatiron database were used to identify transcription factor binding enrichment, and tissue-specific network analyses and patterns were compared to gene expression patterns in chondrocytes from patients with OA. There was a differential expression of 2211 genes (padj<0.05). Pathway enrichment analysis revealed that pro-inflammatory changes, increased metalloprotease, reduced matrix organization, and homeostasis are upregulated in A2AR null chondrocytes. Moreover, stress responses, including autophagy and HIF-1 signaling, seem to be important drivers of OA and bear marked resemblance to the human OA transcriptome. Although A2AR null mice are born with grossly intact articular cartilage, we identify here the molecular foundations for early-onset OA in these mice, further establishing their role as models for human disease and the potential use of adenosine as a treatment for human disease.
  •  
5.
  • Corciulo, Carmen, et al. (författare)
  • Physiological levels of estradiol limit murine osteoarthritis progression
  • 2022
  • Ingår i: The Journal of endocrinology. - 0022-0795 .- 1479-6805. ; 255:2, s. 39-51
  • Tidskriftsartikel (refereegranskat)abstract
    • Among patients with knee osteoarthritis (OA), postmenopausal women are over-represented. The purpose of this study was to determine whether deficiency of female sex steroids affects OA progression and to evaluate the protective effect of treatment with a physiological dose of 17β-estradiol (E2) on OA progression using a murine model. Ovariectomy (OVX) of female mice was used to mimic a postmenopausal state. OVX or sham-operated mice underwent surgery for destabilization of the medial meniscus (DMM) to induce OA. E2 was administered in a pulsed manner for 2 and 8 weeks. OVX of OA mice did not influence the cartilage phenotype or synovial thickness, while both cortical and trabecular subchondral bone mineral density (BMD) decreased after OVX compared with sham-operated mice at 8 weeks post-DMM surgery. Additionally, OVX mice displayed decreased motor activity, reduced threshold of pain sensitivity, and increased number of T cells in the inguinal lymph nodes compared to sham-operated mice 2 weeks after OA induction. Eight weeks of treatment with E2 prevented cartilage damage and thickening of the synovium in OVX OA mice. The motor activity was improved after E2 replacement at the 2 weeks time point, which was also associated with lower pain sensitivity in the OA paw. E2 treatment protected against OVX-induced loss of subchondral trabecular bone. The number of T cells in the inguinal lymph nodes was reduced by E2 treatment after 8 weeks. This study demonstrates that treatment with a physiological dose of E2 exerts a protective role by reducing OA symptoms.
  •  
6.
  • Corciulo, Carmen, et al. (författare)
  • Physiological levels of estradiol limit murine osteoarthritis progression
  • 2022
  • Ingår i: Journal of Endocrinology. - : Bioscientifica. - 0022-0795 .- 1479-6805. ; 255:2, s. 39-51
  • Tidskriftsartikel (refereegranskat)abstract
    • Among patients with knee osteoarthritis (OA), postmenopausal women are over-represented. The purpose of this study was to determine whether deficiency of female sex steroids affects OA progression and to evaluate the protective effect of treatment with a physiological dose of 17 beta-estradiol (E2) on OA progression using a murine model. Ovariectomy (OVX) of female mice was used to mimic a postmenopausal state. OVX or sham-operated mice underwent surgery for destabilization of the medial meniscus (DMM) to induce OA. E2 was administered in a pulsed manner for 2 and 8 weeks. OVX of OA mice did not influence the cartilage phenotype or synovial thickness, while both cortical and trabecular subchondral bone mineral density (BMD) decreased after OVX compared with sham-operated mice at 8 weeks post-DMM surgery. Additionally, OVX mice displayed decreased motor activity, reduced threshold of pain sensitivity, and increased number of T cells in the inguinal lymph nodes compared to sham-operated mice 2 weeks after OA induction. Eight weeks of treatment with E2 prevented cartilage damage and thickening of the synovium in OVX OA mice. The motor activity was improved after E2 replacement at the 2 weeks time point, which was also associated with lower pain sensitivity in the OA paw. E2 treatment protected against OVX-induced loss of subchondral trabecular bone. The number of T cells in the inguinal lymph nodes was reduced by E2 treatment after 8 weeks. This study demonstrates that treatment with a physiological dose of E2 exerts a protective role by reducing OA symptoms.
  •  
7.
  • Corciulo, Carmen, et al. (författare)
  • Pulsed administration for physiological estrogen replacement in mice
  • 2021
  • Ingår i: F1000Research. - : F1000 Research Ltd. - 2046-1402 .- 1759-796X. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Estrogens are important regulators of body physiology and have major effects on metabolism, bone, the immune- and central nervous systems. The specific mechanisms underlying the effects of estrogens on various cells, tissues and organs are unclear and mouse models constitute a powerful experimental tool to define the physiological and pathological properties of estrogens. Menopause can be mimicked in animal models by surgical removal of the ovaries and replacement therapy with 17β-estradiol in ovariectomized (OVX) mice is a common technique used to determine specific effects of the hormone. However, these studies are complicated by the non-monotonic dose-response of estradiol, when given as therapy. Increased knowledge of how to distribute estradiol in terms of solvent, dose, and administration frequency, is required in order to accurately mimic physiological conditions in studies where estradiol treatment is performed. In this study, mice were OVX and treated with physiological doses of 17β-estradiol-3-benzoate (E2) dissolved in miglyol or PBS. Subcutaneous injections were performed every 4 days to resemble the estrus cycle in mice. Results show that OVX induces an osteoporotic phenotype, fat accumulation and impairment of the locomotor ability, as expected. Pulsed administration of physiological doses of E2 dissolved in miglyol rescues the phenotypes induced by OVX. However, when E2 is dissolved in PBS the effects are less pronounced, possibly due to rapid wash out of the steroid.
  •  
8.
  • Corciulo, Carmen, et al. (författare)
  • Signaling of the Purinergic System in the Joint
  • 2020
  • Ingår i: Frontiers in Pharmacology. - : Frontiers Media SA. - 1663-9812. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • The joint is a complex anatomical structure consisting of different tissues, each with a particular feature, playing together to give mobility and stability at the body. All the joints have a similar composition including cartilage for reducing the friction of the movement and protecting the underlying bone, a synovial membrane that produces synovial fluid to lubricate the joint, ligaments to limit joint movement, and tendons for the interaction with muscles. Direct or indirect damage of one or more of the tissues forming the joint is the foundation of different pathological conditions. Many molecular mechanisms are involved in maintaining the joint homeostasis as well as in triggering disease development. The molecular pathway activated by the purinergic system is one of them. The purinergic signaling defines a group of receptors and intermembrane channels activated by adenosine, adenosine diphosphate, adenosine 5'-triphosphate, uridine triphosphate, and uridine diphosphate. It has been largely described as a modulator of many physiological and pathological conditions including rheumatic diseases. Here we will give an overview of the purinergic system in the joint describing its expression and function in the synovium, cartilage, ligament, tendon, and bone with a therapeutic perspective.
  •  
9.
  • Gupta, Priti, et al. (författare)
  • Local Immune Activation and Age Impact on Humoral Immunity in Mice, with a Focus on IgG Sialylation.
  • 2024
  • Ingår i: Vaccines. - 2076-393X. ; 12:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Age alters the host's susceptibility to immune induction. Humoral immunity with circulating antibodies, particularly immunoglobulin G (IgG), plays an essential role in immune response. IgG glycosylation in the fragment crystallizable (Fc) region, including sialylation, is important in regulating the effector function by interacting with Fc gamma receptors (FcγRs). Glycosylation is fundamentally changed with age and inflammatory responses. We aimed to explore the regulation of humoral immunity by comparing responses to antigen-induced immune challenges in young and adult mice using a local antigen-induced arthritis mouse model. This study examines the differences in immune response between healthy and immune-challenged states across these groups. Our initial assessment of the arthritis model indicated that adult mice presented more severe knee swelling than their younger counterparts. In contrast, we found that neither histological assessment, bone mineral density, nor the number of osteoclasts differs. Our data revealed an age-associated but not immune challenge increase in total IgG; the only subtype affected by immune challenge was IgG1 and partially IgG3. Interestingly, the sialylation of IgG2b and IgG3 is affected by age and immune challenges but not stimulated further by immune challenges in adult mice. This suggests a shift in IgG towards a pro-inflammatory and potentially pathogenic state with age and inflammation.
  •  
10.
  • Humeniuk, Piotr, et al. (författare)
  • Profiling of innate and adaptive immune cells during influenza virus infection reveals sex bias in invariant natural killer T (iNKT) cells
  • 2023
  • Ingår i: Immunity, Inflammation and Disease. - 2050-4527. ; 11:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Influenza A virus (IAV) infection leads to significant morbidity and mortality. Biological sex influences the immune responses to IAV infection, resulting in higher mortality in women of reproductive age. Previous studies revealed increased activation of T and B cells in female mice after IAV infection, but extensive analysis of sex differences in both innate and adaptive immune cells over time is lacking. Invariant natural killer T (iNKT) cells are fast-reacting forces and modulators of immune responses that are important to IAV immunity, but it is not known if the presence and function of iNKT cells differ between females and males. The aim of this study was to determine immunological mechanisms that contribute to the increased disease severity in female mice during IAV infection. Methods: Female and male mice were infected with mouse-adapted IAV and monitored for weight loss and survival. Immune cell populations and cytokine expression in bronchoalveolar lavage fluid, lung, and mediastinal lymph node were determined at three time points after infection using flow cytometry and ELISA. Results: The results reveal increased severity and mortality in adult female mice compared to age- matched males. Female mice show larger increases in innate and adaptive immune cell populations and cytokine production in lung compared to mock on Day 6 postinfection. On Day 9 postinfection, female mice express higher numbers of iNKT cells in lung and liver compared to males. Conclusions: This comprehensive analysis of immune cells and cytokines over time following IAV infection reveals increased leukocyte expansion and stronger proinflammatory cytokine responses in female mice during disease initiation. Furthermore, this is the first study to report a sex bias in iNKT cell populations after IAV infection. The data suggests that the process of recovery from IAV-induced airway inflammation is associated with increased expansion of several different iNKT cell subpopulations in female mice.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy