SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Cordoba Jabonero Carmen) "

Sökning: WFRF:(Cordoba Jabonero Carmen)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cordoba-Jabonero, Carmen, et al. (författare)
  • Assessments for possible habitability in Martian polar environments : Fundaments based in ice screening of UV radiation
  • 2004
  • Ingår i: ESA SP. - 0379-6566 .- 1609-0438. ; 545, s. 187-188
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a study of the solar UV radiation in Martian high latitude environments covered by ice, where the UV propagation through the polar cover depends on the ice radiative properties (layers of H2O or CO 2 ice). But also we will investigate the changes in the subsurface UV levels induced by the seasonal variations of solar UV flux on the surface, as well as by the seasonal freezing-thawing and related CO2 sublimation processes. The biological dose relative to DNA-damage will be also estimated for biological implication assessments. All these studies will be compared with the biological dose received in the Antarctic snow-ice covered environment which is seasonally exposed to high UV radiation levels (formation of "ozone hole"), where the environmental conditions could be similar to those present on Mars
  •  
2.
  • Córdoba-Jabonero, Carmen, et al. (författare)
  • Cirrus-induced shortwave radiative effects depending on their optical and physical properties : Case studies using simulations and measurements
  • 2020
  • Ingår i: Atmospheric research. - : Elsevier. - 0169-8095 .- 1873-2895. ; 246
  • Tidskriftsartikel (refereegranskat)abstract
    • Cirrus (Ci) clouds play an important role in the atmospheric radiative balance, and hence in Climate Change. In this work, a polarized Micro-Pulse Lidar (P-MPL), standard NASA/Micro Pulse NETwork (MPLNET) system, deployed at the INTA/El Arenosillo station in Huelva (SW Iberian Peninsula) is used for Ci detection and characterization for the first time at this site. Three days were selected on the basis of the predominantly detected Ci clouds in dependence on their cloud optical depth (COD). Hence, three Ci cloud categories were examined at day-times for comparison with solar radiation issues: 19 cases of sub-visuals (svCi, COD: 0.01–0.03) on 1 October 2016, 7 cases of semitransparents (stCi, COD: 0.03–0.30) on 8 May 2017, and 17 cases of opaques (opCi, COD: 0.3–3.0)on 28 October 2016. Their radiative-relevant optical, macro- and micro-physical properties were retrieved. The mean COD for the svCi, stCi and opCi groups was 0.02 ± 0.01, 0.22 ± 0.08 and 0.93 ± 0.40, respectively; in overall, their lidar ratio ranged between 25 and 35 sr. Ci clouds were detected at 11–13 km height (top boundaries) with geometrical thicknesses of 1.7–2.0 km. Temperatures reported at those altitudes corresponded to lower values than the thermal threshold for homogenous ice formation. Volume linear depolarization ratios of 0.3–0.4 (and normalized backscattering ratios higher than 0.9) also confirmed Ci clouds purely composed of ice particles. Their effective radius was within the interval of 9–15 μm size, and the ice water path ranged from 0.02 (svCi) to 9.9 (opCi) g m−2. The Cirrus Cloud Radiative Effect (CCRE) was estimated using a RT model for Ci-free conditions and Ci-mode (Ci presence) scenarios. RT simulations were performed for deriving the CCRE at the top-of atmosphere (TOA) and on surface (SRF), and also the atmospheric CCRE, for the overall shortwave (SW) range and their spectral sub-intervals (UV, VIS and NIR). A good agreement was first obtained for the RT simulations as validated against solar radiation measurements under clean conditions for solar zenith angles less than 75° (differences were mainly within ±20 W m−2 and correlation coefficients close to 1). By considering all the Ci clouds, independently on their COD, the mean SW CCRE values at TOA and SRF were, respectively, −30 ± 26 and − 24 ± 19 W m−2, being the mean atmospheric CCRE of −7 ± 7 W m−2; these values are in good agreement with global annual estimates found for Ci clouds. By using linear regression analysis, a Ci-induced enhancing cooling radiative effect was observed as COD increased for all the spectral ranges, with high correlations. In particular, the SW CCRE at TOA and SRF, and the atmospheric CCRE, presented COD-dependent rates of −74 ± 4, −55 ± 5, −19 ± 2 W m−2τ−1, respectively. Additionally, increasing negative rates are found from UV to NIR for each Ci category, reflecting a higher cooling NIR contribution w.r.t. UV and VIS ranges to the SW CCRE, and being also more pronounced at the TOA w.r.t. on SRF, as expected. The contribution of the SW CCRE to the net (SW + LW) radiative balance can be also potentially relevant. Results are especially significant for space-borne photometric/radiometric instrumentation and can contribute to validation purposes of the next ESA's EarthCARE mission, whose principal scientific goal is focused on radiation-aerosol-cloud interaction research.
  •  
3.
  • Córdoba-Jabonero, Carmen, et al. (författare)
  • Performance of a dust model to predict the vertical mass concentration of an extreme Saharan dust event in the Iberian Peninsula : Comparison with continuous, elastic, polarization-sensitive lidars
  • 2019
  • Ingår i: Atmospheric Environment. - : Elsevier. - 1352-2310 .- 1873-2844. ; 214
  • Tidskriftsartikel (refereegranskat)abstract
    • An intense dusty event unusually occurred in wintertime over the Iberian Peninsula was detected over two Spanish NASA/MPLNET sites: the temporary Torrejón Observational Tower for Environmental Monitoring (TOTEM, 40.5°N 3.5°W) and the Barcelona station (BCN, 41.4°N 2.1°E). The highest dust incidence was observed from 22 to 23 February 2017; this two-day dusty scenario is examined in order to evaluate the performance of the operational NMMB/BSC-Dust model on forecasted mass concentration profiling in comparison with polarized Micro-Pulse (P-MPL) mass estimates for dust particles. First, the optical properties of the dust (DD) were effectively separated from the non-dust (ND) component by using the combined P-MPL/POLIPHON method. Lidar-derived DD optical depths reached maximums of 1.6–1.7 (±0.1) at both stations. Typical features for dust were obtained: linear particle depolarization ratios between 0.3 and 0.4, and lidar ratios in the range of 41–70 sr and 36–66 sr, respectively, for TOTEM and BCN. Lower AERONET Ångström exponents were reported for TOTEM (0.12 ± 0.04) than at BCN (0.5 ± 0.3). HYSPLIT back-trajectory analysis showed air masses coming from the Sahara region, mostly transporting dust particles. AERONET-derived Mass Extinction Efficiencies (MEE) under dusty conditions were used for the extinction-to-mass conversion procedure as applied to the P-MPL measurements: MEE values were lower at TOTEM (0.57 ± 0.01 m2 g−1) than those found at BCN (0.87 ± 0.10 m2 g−1). Those results reveal that dust particles were predominantly larger at TOTEM than those observed at BCN, and a longer transport of dust particles from the Sahara sources to BCN could favour a higher gravitational settling of coarser particles before reaching BCN than TOTEM. A comparative analysis between profiles as obtained from the lidar DD component of the mass concentration and those forecasted by the NMMB/BSC-Dust model (25 available dusty profiles) was performed. The degree of agreement between both datasets was determined by the percentage of dusty cases satisfying selected model performance criteria (favourable cases) of two proxies: the Mean Fractional Bias, M⁢F⁢B" role="presentation" style="box-sizing: border-box; margin: 0px; padding: 0px; display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;">MFBM⁢F⁢B, and the correlation coefficient, C⁢C" role="presentation" style="box-sizing: border-box; margin: 0px; padding: 0px; display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;">CCC⁢C. A good agreement is found (72% and 76%, respectively, of favourable cases); however, large discrepancies are found at low altitudes between the dust model and the lidar observations, mostly at early stages of the arrival of the dust intrusion. Higher model-derived centre-of-mass (CoM) heights are found in 60% of the cases (with differences < 15% w.r.t. the lidar CoM, whose values ranged between 1.8 and 2.3 km height). In addition, modelled mass loading (ML) values were generally higher than the lidar-derived ones. However, the evolution of the mass loading along the two days, 22 and 23 February, was rather similar for both the model forecasting and lidar observations at both stations. The relative ML differences (<50%) of the mass loading represented 60% of all cases. Discrepancies can be based on the uncertainties in the lidar retrievals (mainly, the use of single extinction-to-mass conversion factors). In general, a moderately good agreement is observed between the P-MPL-derived dust mass concentration profiles and the NMMB/BSC-Dust model ones at both sites; large discrepancies are found at lower altitudes, plausibly due to a lower sedimentation of dust particles coming from upper layers by gravitational settling than that introduced by the NMMB/BSC-Dust model in the simulations. The methodology described for the dust model evaluation against the continuous P-MPL observations can be easily adopted for an operational use of the NMMB/BSC-Dust model for forecasting the mass concentration profiling in frequently dust-affected regions with serious climate and environmental implications, as long as a typical MEE for dust could be accurately specified. Hence, a statistical analysis for determining AERONET-based MEE values over the Iberian Peninsula is on-going.
  •  
4.
  • Cordoba-Jabonero, Carmen, et al. (författare)
  • Radiative habitable zones in martian polar environments
  • 2005
  • Ingår i: Icarus. - : Elsevier. - 0019-1035 .- 1090-2643. ; 175:2, s. 360-371
  • Tidskriftsartikel (refereegranskat)abstract
    • The biologically damaging solar ultraviolet (UV) radiation (quantified by the DNA-weighted dose) reaches the martian surface in extremely high levels. Searching for potentially habitable UV-protected environments on Mars, we considered the polar ice caps that consist of a seasonally varying CO2 ice cover and a permanent H2O ice layer. It was found that, though the CO2 ice is insufficient by itself to screen the UV radiation, at ∼1 m depth within the perennial H2O ice the DNA-weighted dose is reduced to terrestrial levels. This depth depends strongly on the optical properties of the H2O ice layers (for instance snow-like layers). The Earth-like DNA-weighted dose and Photosynthetically Active Radiation (PAR) requirements were used to define the upper and lower limits of the northern and southern polar Radiative Habitable Zone (RHZ) for which a temporal and spatial mapping was performed. Based on these studies we conclude that photosynthetic life might be possible within the ice layers of the polar regions. The thickness varies along each martian polar spring and summer between ∼1.5 and 2.4 m for H2O ice-like layers, and a few centimeters for snow-like covers. These martian Earth-like radiative habitable environments may be primary targets for future martian astrobiological missions. Special attention should be paid to planetary protection, since the polar RHZ may also be subject to terrestrial contamination by probes.
  •  
5.
  • Zorzano, María Paz, et al. (författare)
  • Influence of aerosol multiple scattering of ultraviolet radiation on martian atmospheric sensing
  • 2007
  • Ingår i: Icarus. - : Elsevier. - 0019-1035 .- 1090-2643. ; 190:2, s. 492-503
  • Tidskriftsartikel (refereegranskat)abstract
    • The ultraviolet (UV) radiative transfer problem in the martian atmosphere is dominated by multiple scattering of photons with the micronsized aerosols that are suspended in the thin atmosphere. By implementing a multiple stream, vertical fine layering description of the radiative transfer equation that is able to cope with the strong vertical variations of the atmospheric properties, we estimate the resulting upwelling and downwelling UV irradiances under different martian scenarios in equatorial and close to equatorial latitudes. We include the latest SPICAM measurements on the aerosol vertical profile (distribution of Angstrom exponent and aerosol loading), scattering properties (asymmetry parameter and single scattering albedo), ground albedo, and 03 content as well as MER long-term monitorization of ground-based aerosol optical depth. We show that due to the fact that the distributions of absorbing (ozone) and scattering (aerosols) agents are vertically coincident, the probability to absorb a photon following a multiple scattered trajectory is increased. One can thus best deteetweak ozone absorption signatures in the upwelling and downwelling diffuse irradiances. However as it is later shown, the absorption signature in the diffuse irradiance field and for a given total ozone column, changes with the total aerosol content and its vertical profile. This must be taken into account in order not to overestimate the total ozone column. It is shown that typical dust scenarios such as those seen by the MER long-term monitorization of ground-based aerosol optical depth, tau approximate to 0.45 and 0.9, produce UV nadir viewing reflectance values of the order of 0.02 and 0.04, respectively, which are comparable with those actually measured by Mars Express. For these scenarios, more than 75% of the upwelling irradiance at the top of the atmosphere (TOA) is backscattered by atmospheric aerosols alone, the rest being reflected by the low albedo ground. Depending on the aerosol vertical distribution, the ozone absorption signature may be changed by a factor of two. Finally we also show that the upwelling irradiance depends also on the ground altitude. In the future, this work may be useful to link in situ, ground-based UV measurements, with simultaneous satellite nadir measurements as well as to extract relevant atmospheric information from the irradiance measurements
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy