SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Cormier Bettie 1993 ) "

Sökning: WFRF:(Cormier Bettie 1993 )

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Blanc, Mélanie, 1993-, et al. (författare)
  • Multi- and transgenerational effects following early-life exposure of zebrafish to permethrin and coumarin 47 : Impact on growth, fertility, behavior and lipid metabolism
  • 2020
  • Ingår i: Ecotoxicology and Environmental Safety. - : Academic Press. - 0147-6513 .- 1090-2414. ; 205
  • Tidskriftsartikel (refereegranskat)abstract
    • Transgenerational effects induced by environmental stressors are a threat to ecosystems and human health. However, there is still limited observation and understanding of the potential of chemicals to influence life outcomes over several generations. In the present study, we investigated the effects of two environmental contaminants, coumarin 47 and permethrin, on exposed zebrafish (FO) and their progeny (F1-F3). Coumarin 47 is commonly found in personal care products and dyes, whereas permethrin is used as a domestic and agricultural pyrethroid insecticide/insect repellent. Zebrafish (F0) were exposed during early development until 28 days post-fertilization and their progeny (F1-F3) were bred unexposed. On one hand, the effects induced by coumarin 47 suggest no multigenerational toxicity. On the other hand, we found that behavior of zebrafish larvae was significantly affected by exposure to permethrin in F1 to F3 generations with some differences depending on the concentration. This suggests persistent alteration of the neural or neuromuscular function. In addition, lipidomic analyses showed that permethrin treatment was partially correlated with lysophosphatidylcholine levels in zebrafish, an important lipid for neurodevelopment. Overall, these results stress out one of the most widely used pyrethroids can trigger long-term, multi- and possibly transgenerational changes in the nervous system of zebrafish. These neurobehavioral changes echo the effects observed under direct exposure to high concentrations of permethrin and therefore call for more research on mechanisms underlying effect inheritance.
  •  
3.
  • Cormier, Bettie, 1993-, et al. (författare)
  • Chronic feeding exposure to virgin and spiked microplastics disrupts essential biological functions in teleost fish
  • 2021
  • Ingår i: Journal of Hazardous Materials. - : Elsevier. - 0304-3894 .- 1873-3336. ; 415
  • Tidskriftsartikel (refereegranskat)abstract
    • Toxicity of polyethylene (PE) and polyvinyl chloride (PVC) microplastics (MPs), either virgin or spiked with chemicals, was evaluated in two short-lived fish using a freshwater species, zebrafish, and a marine species, marine medaka. Exposures were performed through diet using environmentally relevant concentrations of MPs over 4 months. No modification of classical biomarkers, lipid peroxidation, genotoxicity or F0 behaviour was observed. A significant decrease in growth was reported after at least two months of exposure. This decrease was similar between species, independent from the type of MPs polymer and the presence or not of spiked chemicals, but was much stronger in females. The reproduction was evaluated and it revealed a significant decrease in the reproductive output for both species and in far more serious numbers in medaka. PVC appeared more reprotoxic than PE as were MPs spiked with PFOS and benzophenone-3 compared to MPs spiked with benzo[a]pyrene. Further, PVC-benzophenone-3 produced behavioural disruption in offspring larvae. These results obtained with two species representing different aquatic environments suggest that microplastics exert toxic effects, slightly different according to polymers and the presence or not of sorbed chemicals, which may lead in all cases to serious ecological disruptions.
  •  
4.
  • Batel, A., et al. (författare)
  • Histological, enzymatic and chemical analyses of the potential effects of differently sized microplastic particles upon long-term ingestion in zebrafish (Danio rerio)
  • 2020
  • Ingår i: Marine Pollution Bulletin. - : Elsevier. - 0025-326X .- 1879-3363. ; 153
  • Tidskriftsartikel (refereegranskat)abstract
    • In microplastics (MPs) research, there is an urgent need to critically reconsider methodological approaches and results published, since public opinion and political decisions might be based on studies using debatable methods and reporting questionable results. For instance, recent studies claim that MPs induce intestinal damage and that relatively large MPs are transferred to, e.g., livers in fish. However, there is methodological criticism and considerable concern whether MP transfer to surrounding tissues is plausible. Likewise, there is an ongoing discussion in MP research if MPs act as vectors for adsorbed hazardous chemicals. In this study, effects of very small (4–6 μm) and very large (125–500 μm) benzo(a) pyrene (BaP)-spiked polyethylene (PE) particles administered via different uptake routes (food chain vs. direct uptake) were compared in a 21-day zebrafish (Danio rerio) feeding experiment. Particular care was taken to prevent cross-contamination of MPs during dissection and histological sample preparation. In contrast to numerous reports in literature describing similar approaches, independent of exposure route and MP size, no adverse effects could be detected. Likewise, no BaP accumulation could be documented, and MPs were exclusively seen in the lumen of the intestinal tract, which, however, did not induce any histopathological effects. Results indicate that in fish MPs are taken up, pass along the intestinal lumen and are excreted without any symptoms of adverse effects.
  •  
5.
  • Beiras, R., et al. (författare)
  • Ingestion and contact with polyethylene microplastics does not cause acute toxicity on marine zooplankton
  • 2018
  • Ingår i: Journal of Hazardous Materials. - : Elsevier. - 0304-3894 .- 1873-3336. ; 360, s. 452-460
  • Tidskriftsartikel (refereegranskat)abstract
    • Toxicity of polyethylene microplastics (PE-MP) of size ranges similar to their natural food to zooplanktonic organisms representative of the main taxa present in marine plankton, including rotifers, copepods, bivalves, echinoderms and fish, was evaluated. Early life stages (ELS) were prioritized as testing models in order to maximize sensitivity. Treatments included particles spiked with benzophenone-3 (BP-3), a hydrophobic organic chemical used in cosmetics with direct input in coastal areas. Despite documented ingestion of both virgin and BP-3 spiked microplastics no acute toxicity was found at loads orders of magnitude above environmentally relevant concentrations on any of the invertebrate models. In fish tests some effects, including premature or reduced hatching, were observed after 12 d exposure at 10 mg L-1 of BP-3 spiked PE-MP. The results obtained do not support environmentally relevant risk of microplastics on marine zooplankton. Similar approaches testing more hydrophobic chemicals with higher acute toxicity are needed before these conclusions could be extended to other organic pollutants common in marine ecosystems. Therefore, the replacement of these polymers in consumer products must be carefully considered.
  •  
6.
  • Cormier, Bettie, 1993-, et al. (författare)
  • Chemicals sorbed to environmental microplastics are toxic to early life stages of aquatic organisms
  • 2021
  • Ingår i: Ecotoxicology and Environmental Safety. - : Academic Press. - 0147-6513 .- 1090-2414. ; 208
  • Tidskriftsartikel (refereegranskat)abstract
    • Microplastics are ubiquitous in aquatic ecosystems, but little information is currently available on the dangers and risks to living organisms. In order to assess the ecotoxicity of environmental microplastics (MPs), samples were collected from the beaches of two islands in the Guadeloupe archipelago, Petit-Bourg (PB) located on the main island of Guadeloupe and Marie-Galante (MG) on the second island of the archipelago. These samples have a similar polymer composition with mainly polyethylene (PE) and polypropylene (PP). However, these two samples are very dissimilar with regard to their contamination profile and their toxicity. MPs from MG contain more lead, cadmium and organochlorine compounds while those from PB have higher levels of copper, zinc and hydrocarbons. The leachates of these two samples of MPs induced sublethal effects on the growth of sea urchins and on the pulsation frequency of jellyfish ephyrae but not on the development of zebrafish embryos. The toxic effects are much more marked for samples from the PB site than those from the MG site. This work demonstrates that MPs can contain high levels of potentially bioavailable toxic substances that may represent a significant ecotoxicological risk, particularly for the early life stages of aquatic animals.
  •  
7.
  • Cormier, Bettie, 1993-, et al. (författare)
  • Multi-Laboratory Hazard Assessment of Contaminated Microplastic Particles by Means of Enhanced Fish Embryo Test With the Zebrafish (Danio rerio)
  • 2019
  • Ingår i: Frontiers in Environmental Science. - : Frontiers Media S.A.. - 2296-665X. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • As wide-spread pollutants in the marine environment, microplastics (MPs) have raised public concern about potential toxic effects in aquatic organisms, and, among others, MPs were suspected to act as a vector for organic pollutants to biota. The purpose of the present study was to investigate effects by three model pollutants, oxybenzone (BP3), benzo[a] pyrene (BaP), and perfluorooctane sulfonate (PFOS) adsorbed to polyethylene MPs on the basis of a standard assay, the acute fish embryo toxicity test (FET; OECD TG 236) with zebrafish (Danio rerio) supplemented by additional endpoints such as induction of ethoxyresorufin-O-deethylase (EROD) activity, modification of cyp1a gene transcription and changes in larval swimming behavior. FET assays were performed in three laboratories using slightly different husbandry and exposure conditions, which, however, were all fully compatible with the limits defined by OECD TG 236. This allowed for testing of potential changes in the FET assay due to protocol variations. The standard endpoints of the FET (acute embryotoxicity) did not reveal any acute toxicity for both virgin MPs and MPs spiked with BP3, BaP, and PFOS. With respect to sublethal endpoints, EROD activity was increased after exposure to MPs spiked with BP3 (3 h pulse) and MPs spiked with BaP (96 h continuous exposure). Cyp1a transcription was increased upon exposure to MPs spiked with BP3 or BaP. For the selected combination of MPs particles and contaminants, the basic FET proved not sensitive enough to reveal effects of (virgin and spiked) MPs. However, given that the FET can easily be supplemented by a broad variety of more subtle and sensitive endpoints, an enhanced FET protocol may provide a relevant approach with developmental stages of a vertebrate animal model, which is not protected by current EU animal welfare legislation (Directive EU 2010/63).
  •  
8.
  • Cormier, Bettie, 1993-, et al. (författare)
  • Sorption and desorption kinetics of PFOS to pristine microplastic
  • 2022
  • Ingår i: Environmental Science and Pollution Research. - : Springer. - 0944-1344 .- 1614-7499. ; 29:3, s. 4497-4507
  • Tidskriftsartikel (refereegranskat)abstract
    • The sorption processes of persistent organic pollutants on microplastics particles are poorly understood. Therefore, the present study investigated the sorption processes of perfluorooctanesulfonate (PFOS) on polyethylene (PE) microplastic particles (MPs) which are representing a prominent environmental pollutant and one of the most abundant microplastic polymers in the aquatic environment, respectively. The focus was set on the investigation of the impact of the particle size on PFOS sorption using four different PE MPs size ranges. The sorption kinetics for 6 months was studied with one selected size range of PE MPs. Besides, the desorption of PFOS from PE MPs under simulated digestive conditions was carried out by using artificial gut fluid mimicking the intestinal juice of fish. The investigation of the size effects of particles over 6 months demonstrated a linear increase of PFOS concentration sorbed onto PE with a decrease of the particle size. Thus, our findings implicate efficient sorption of PFOS onto PE MPs of different sizes. The results showed that PFOS desorbed from the PE MPs into the artificial gut fluid with a rate of 70 to 80%. Besides, a longer exposure of PE MPs to PFOS leads to a higher concentration adsorbed by PE MPs, which may favor the ingestion of higher concentration of PFOS, and thus represents a higher risk to transfer relevant concentrations of PFOS during digestion.
  •  
9.
  • Le Bihanic, F., et al. (författare)
  • Organic contaminants sorbed to microplastics affect marine medaka fish early life stages development
  • 2020
  • Ingår i: Marine Pollution Bulletin. - : Elsevier. - 0025-326X .- 1879-3363. ; 154
  • Tidskriftsartikel (refereegranskat)abstract
    • The role of polyethylene microplastics 4–6 μm size (MPs) in the toxicity of environmental compounds to fish early life stages (ELS) was investigated. Marine medaka Oryzias melastigma embryos and larvae were exposed to suspended MPs spiked with three model contaminants: benzo(a)pyrene (MP-BaP), perfluorooctanesulfonic acid (MP-PFOS) and benzophenone-3 (MP-BP3) for 12 days. There was no evidence of MPs ingestion but MPs agglomerated on the surface of the chorion. Fish ELS exposed to virgin MPs did not show toxic effects. Exposure to MP-PFOS decreased embryonic survival and prevented hatching. Larvae exposed to MP-BaP or MP-BP3 exhibited reduced growth, increased developmental anomalies and abnormal behavior. Compared to equivalent waterborne concentrations, BaP and PFOS appeared to be more embryotoxic when spiked on MPs than when alone in seawater. These results suggest a relevant pollutant transfer by direct contact of MPs to fish ELS that should be included in the ecotoxicological risk assessment of MPs. 
  •  
10.
  • O’Donovan, Sarit, et al. (författare)
  • Ecotoxicological Effects of Chemical Contaminants Adsorbed to Microplastics in the Clam Scrobicularia plana
  • 2018
  • Ingår i: Frontiers in Marine Science. - : Frontiers Media S.A.. - 2296-7745. ; 5
  • Tidskriftsartikel (refereegranskat)abstract
    • Although microplastics are distributed globally in the marine environment, a great deal of unknowns relating to their ecotoxicological effects on the marine biota remain. Due to their lipophilic nature, microplastics have the potential to adsorb persistent organic pollutants present in contaminated regions, which may increase their detrimental impact once assimilated by organisms. This study investigates the ecotoxicological effects of exposure to low-density polyethylene (LDPE) microplastics (11 - 13 µm), with and without adsorbed contaminants (benzo[a]pyrene - BaP and perfluorooctane sulfonic acid - PFOS), in the peppery furrow shell clam, Scrobicularia plana. Environmentally relevant concentrations of contaminants (BaP - 16.87±0.22 µg g-1 and PFOS - 70.22±12.41 µg g-1) were adsorbed to microplastics to evaluate the potential role of plastic particles as a source of chemical contamination once ingested. S. plana were exposed to microplastics, at a concentration of 1 mg L-1, in a water-sediment exposure setup for 14 days. Clams were sampled at the beginning of the experiment (day 0) and after 3, 7 and 14 days. BaP accumulation, in whole clam tissues, was analysed. A multi-biomarker assessment was conducted in the gills, digestive gland, and haemolymph of clams to clarify the effects of exposure. This included the quantification of antioxidant (superoxide dismutase, catalase, glutathione peroxidase) and biotransformation (glutathione-S-transferases) enzyme activities, oxidative damage (lipid peroxidation levels), genotoxicity (single and double strand DNA breaks), and neurotoxicity (acetylcholinesterase activity). Results suggest a potential mechanical injury of gills caused by ingestion of microplastics that may also affect the analysed biomarkers. The digestive gland seems less affected by mechanical damage caused by virgin microplastic exposure, with the MP-adsorbed BaP and PFOS exerting a negative influence over the assessed biomarkers in this tissue.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy