SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Corpe Louie) "

Sökning: WFRF:(Corpe Louie)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alimena, Juliette, et al. (författare)
  • Searching for long-lived particles beyond the Standard Model at the Large Hadron Collider
  • 2020
  • Ingår i: Journal of Physics G. - : IOP Publishing. - 0954-3899 .- 1361-6471. ; 47:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Particles beyond the Standard Model (SM) can generically have lifetimes that are long compared to SM particles at the weak scale. When produced at experiments such as the Large Hadron Collider (LHC) at CERN, these long-lived particles (LLPs) can decay far from the interaction vertex of the primary proton-proton collision. Such LLP signatures are distinct from those of promptly decaying particles that are targeted by the majority of searches for new physics at the LHC, often requiring customized techniques to identify, for example, significantly displaced decay vertices, tracks with atypical properties, and short track segments. Given their non-standard nature, a comprehensive overview of LLP signatures at the LHC is beneficial to ensure that possible avenues of the discovery of new physics are not overlooked. Here we report on the joint work of a community of theorists and experimentalists with the ATLAS, CMS, and LHCb experiments-as well as those working on dedicated experiments such as MoEDAL, milliQan, MATHUSLA, CODEX-b, and FASER-to survey the current state of LLP searches at the LHC, and to chart a path for the development of LLP searches into the future, both in the upcoming Run 3 and at the high-luminosity LHC. The work is organized around the current and future potential capabilities of LHC experiments to generally discover new LLPs, and takes a signature-based approach to surveying classes of models that give rise to LLPs rather than emphasizing any particular theory motivation. We develop a set of simplified models; assess the coverage of current searches; document known, often unexpected backgrounds; explore the capabilities of proposed detector upgrades; provide recommendations for the presentation of search results; and look towards the newest frontiers, namely high-multiplicity 'dark showers', highlighting opportunities for expanding the LHC reach for these signals.
  •  
2.
  • Bierlich, Christian, et al. (författare)
  • Robust independent validation of experiment and theory : RIVET version 3
  • 2020
  • Ingår i: SciPost Physics. - 2542-4653. ; 8:2
  • Tidskriftsartikel (refereegranskat)abstract
    • First released in 2010, the RIVET library forms an important repository for analysis code, facilitating comparisons between measurements of the final state in particle collisions and theoretical calculations of those final states. We give an overview of RIVET’s current design and implementation, its uptake for analysis preservation and physics results, and summarise recent developments including propagation of MC systematic-uncertainty weights, heavy-ion and ep physics, and systems for detector emulation. In addition, we provide a short user guide that supplements and updates the RIVET user manual.
  •  
3.
  • Bothmann, Enrico, et al. (författare)
  • A standard convention for particle-level Monte Carlo event-variation weights
  • 2023
  • Ingår i: SciPost Physics Core. - 2666-9366. ; 6:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Streams of event weights in particle-level Monte Carlo event generators are a convenient and immensely CPU-efficient approach to express systematic uncertainties in phenomenology calculations, providing systematic variations on the nominal prediction within a single event sample. But the lack of a common standard for labelling these variation streams across different tools has proven to be a major limitation for event-processing tools and analysers alike. Here we propose a well-defined, extensible community standard for the naming, ordering, and interpretation of weight streams that will serve as the basis for semantically correct parsing and combination of such variations in both theoretical and experimental studies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy