SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Cottin Hervé) "

Sökning: WFRF:(Cottin Hervé)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fray, Nicolas, et al. (författare)
  • High-molecular-weight organic matter in the particles of comet 67P/Churyumov–Gerasimenko
  • 2016
  • Ingår i: Nature. - : Nature Publishing Group. - 0028-0836 .- 1476-4687. ; 538:7623, s. 72-74
  • Tidskriftsartikel (refereegranskat)abstract
    • The presence of solid carbonaceous matter in cometary dust was established by the detection of elements such as carbon, hydrogen, oxygen and nitrogen in particles from comet 1P/Halley1, 2. Such matter is generally thought to have originated in the interstellar medium3, but it might have formed in the solar nebula—the cloud of gas and dust that was left over after the Sun formed4. This solid carbonaceous material cannot be observed from Earth, so it has eluded unambiguous characterization5. Many gaseous organic molecules, however, have been observed6, 7, 8, 9; they come mostly from the sublimation of ices at the surface or in the subsurface of cometary nuclei8. These ices could have been formed from material inherited from the interstellar medium that suffered little processing in the solar nebula10. Here we report the in situ detection of solid organic matter in the dust particles emitted by comet 67P/Churyumov–Gerasimenko; the carbon in this organic material is bound in very large macromolecular compounds, analogous to the insoluble organic matter found in the carbonaceous chondrite meteorites11, 12. The organic matter in meteorites might have formed in the interstellar medium and/or the solar nebula, but was almost certainly modified in the meteorites’ parent bodies11. We conclude that the observed cometary carbonaceous solid matter could have the same origin as the meteoritic insoluble organic matter, but suffered less modification before and/or after being incorporated into the comet.
  •  
2.
  • Hilchenbach, Martin, et al. (författare)
  • Mechanical and electrostatic experiments with dust particles collected in the inner coma of comet 67P by COSIMA onboard Rosetta
  • 2017
  • Ingår i: Philosophical Transactions. Series A. - : The Royal Society. - 1364-503X .- 1471-2962. ; 375:2097
  • Tidskriftsartikel (refereegranskat)abstract
    • The in situ cometary dust particle instrument COSIMA (COmetary Secondary Ion Mass Analyser) onboard ESA's Rosetta mission has collected about 31 000 dust particles in the inner coma of comet 67P/Churyumov-Gerasimenko since August 2014. The particles are identified by optical microscope imaging and analysed by time-of-flight secondary ion mass spectrometry. After dust particle collection by low speed impact on metal targets, the collected particle morphology points towards four families of cometary dust particles. COSIMA is an in situ laboratory that operates remotely controlled next to the comet nucleus. The particles can be further manipulated within the instrument by mechanical and electrostatic means after their collection by impact. The particles are stored above 0°C in the instrument and the experiments are carried out on the refractory, ice-free matter of the captured cometary dust particles. An interesting particle morphology class, the compact particles, is not fragmented on impact. One of these particles was mechanically pressed and thereby crushed into large fragments. The particles are good electrical insulators and transform into rubble pile agglomerates by the application of an energetic indium ion beam during the secondary ion mass spectrometry analysis. This article is part of the themed issue 'Cometary science after Rosetta'. © 2017 The Authors.
  •  
3.
  • Hornung, Klaus, et al. (författare)
  • On structural properties of Comet 67/P dust particles collected in situ by ROSETTA/COSIMA from observations of electrical fragmentation
  • 2023
  • Ingår i: Planetary and Space Science. ; 236
  • Tidskriftsartikel (refereegranskat)abstract
    • During ESA’s Rosetta science mission, the COSIMA instrument collected dust particles in the coma of Comet 67P/Churyumov-Gerasimenko during two years near the comet’s nucleus. The largest particles are about 1 m m in size. The collection process involved a low velocity impact on porous gold-black surfaces, often resulting in breakup, from which information on structural properties has previously been derived (Langevin et al., 2016). However, some of the particles were collected with little damage, but fragmented due to charging during subsequent secondary ion mass spectrometry. This report shows that the details of this electrical fragmentation support the concept of the existence of stable units with sizes of tens of ÎŒ m within the incoming cometary dust particles prior to collection, possibly representing remnants of the early accretion processes.
  •  
4.
  • Mewton, Nathan, et al. (författare)
  • Rationale and design of the Cyclosporine to ImpRove Clinical oUtcome in ST-elevation myocardial infarction patients (the CIRCUS trial)
  • 2015
  • Ingår i: American Heart Journal. - : Elsevier BV. - 1097-6744 .- 0002-8703. ; 169:6, s. 6-766
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Both acute myocardial ischemia and reperfusion contribute to cardiomyocyte death in ST-elevation myocardial infarction (STEMI). The final infarct size is the principal determinant of subsequent clinical outcome in STEMI patients. In a proof-of-concept phase II trial, the administration of cyclosporine prior to primary percutaneous coronary intervention (PPCI) has been associated with a reduction of infarct size in STEMI patients. Methods CIRCUS is an international, prospective, multicenter, randomized, double-blinded, placebo-controlled trial. The study is designed to compare the efficacy and safety of cyclosporine versus placebo, in addition to revascularization by PPCI, in patients presenting with acute anterior myocardial infarction within 12 hours of symptoms onset and initial TIMI flow <= 1 in the culprit left anterior descending coronary artery. Patients are randomized in a 1: 1 fashion to 2.5 mg/kg intravenous infusion of cyclosporine or matching placebo performed in theminutes preceding PCI. The primary efficacy end point of CIRCUS is a composite of 1-year all-cause mortality, rehospitalization for heart failure or heart failure worsening during initial hospitalization, and left ventricular adverse remodeling as determined by sequential transthoracic echochardiography. Secondary outcomes will be tested using a hierarchical sequence of left ventricular (LV) ejection fraction and absolute measurements of LV volumes. The composite of death and rehospitalization for heart failure or heart failure worsening during initial hospitalization will be further assessed at three years after the initial infarction. Results Recruitment lasted from April 2011 to February 2014. The CIRCUS trial has recruited 975 patients with acute anterior myocardial infarction. The 12-months results are expected to be available in 2015. Conclusions The CIRCUS trial is testing the hypothesis that cyclosporine in addition to early revascularization with PPCI compared to placebo in patients with acute anterior myocardial infarction reduces the incidence of death, heart failure and adverse LV remodeling at one-year follow-up.
  •  
5.
  • Schulz, Rita, et al. (författare)
  • Comet 67P/Churyumov-Gerasimenko sheds dust coat accumulated over the past four years
  • 2015
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 518:7538, s. 216-218
  • Tidskriftsartikel (refereegranskat)abstract
    • Comets are composed of dust and frozen gases. The ices are mixed with the refractory material either as an icy conglomerate, or as an aggregate of pre-solar grains (grains that existed prior to the formation of the Solar System), mantled by an ice layer. The presence of water-ice grains in periodic comets is now well established. Modelling of infrared spectra obtained about ten kilometres from the nucleus of comet Hartley 2 suggests that larger dust particles are being physically decoupled from fine-grained water-ice particles that may be aggregates, which supports the icy-conglomerate model. It is known that comets build up crusts of dust that are subsequently shed as they approach perihelion. Micrometre-sized interplanetary dust particles collected in the Earth's stratosphere and certain micrometeorites are assumed to be of cometary origin. Here we report that grains collected from the Jupiter-family comet 67P/Churyumov-Gerasimenko come from a dusty crust that quenches the material outflow activity at the comet surface. The larger grains (exceeding 50 micrometres across) are fluffy (with porosity over 50 per cent), and many shattered when collected on the target plate, suggesting that they are agglomerates of entities in the size range of interplanetary dust particles. Their surfaces are generally rich in sodium, which explains the high sodium abundance in cometary meteoroids. The particles collected to date therefore probably represent parent material of interplanetary dust particles. This argues against comet dust being composed of a silicate core mantled by organic refractory material and then by a mixture of water-dominated ices. At its previous recurrence (orbital period 6.5 years), the comet's dust production doubled when it was between 2.7 and 2.5 astronomical units from the Sun, indicating that this was when the nucleus shed its mantle. Once the mantle is shed, unprocessed material starts to supply the developing coma, radically changing its dust component, which then also contains icy grains, as detected during encounters with other comets closer to the Sun.
  •  
6.
  • Varmuza, Kurt, et al. (författare)
  • Composition of cometary particles collected during two periods of the Rosetta mission : multivariate evaluation of mass spectral data
  • 2020
  • Ingår i: Journal of Chemometrics. - : John Wiley and Sons Ltd. - 0886-9383 .- 1099-128X.
  • Tidskriftsartikel (refereegranskat)abstract
    • The instrument COSIMA (COmetary Secondary Ion Mass Analyzer) onboard of the European Space Agency mission Rosetta collected and analyzed dust particles in the neighborhood of comet 67P/Churyumov-Gerasimenko. The chemical composition of the particle surfaces was characterized by time-of-flight secondary ion mass spectrometry. A set of 2213 spectra has been selected, and relative abundances for CH-containing positive ions as well as positive elemental ions define a set of multivariate data with nine variables. Evaluation by complementary chemometric techniques shows different compositions of sample groups collected during two periods of the mission. The first period was August to November 2014 (far from the Sun); the second period was January 2015 to February 2016 (nearer to the Sun). The applied data evaluation methods consider the compositional nature of the mass spectral data and comprise robust principal component analysis as well as classification with discriminant partial least squares regression, k-nearest neighbor search, and random forest decision trees. The results indicate a high importance of the relative abundances of the secondary ions C+ and Fe+ for the group separation and demonstrate an enhanced content of carbon-containing substances in samples collected in the period with smaller distances to the Sun. © 2020 The Authors.
  •  
7.
  • Varmuza, Kurt, et al. (författare)
  • Significance of variables for discrimination : Applied to the search of organic ions in mass spectra measured on cometary particles
  • 2018
  • Ingår i: Journal of Chemometrics. - : Wiley. - 0886-9383 .- 1099-128X. ; 32:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The instrument Cometary Secondary Ion Mass Analyzer (COSIMA) on board of the European Space Agency mission Rosetta to the comet 67P/Churyumov-Gerasimenko is a secondary ion mass spectrometer with a time-of-flight mass analyzer. It collected near the comet several thousand particles, imaged them, and analyzed the elemental and chemical compositions of their surfaces. In this study, variables have been generated from the spectral data covering the mass ranges of potential C-, H-, N-, and O-containing ions. The variable importance in binary discriminations between spectra measured on cometary particles and those measured on the target background has been estimated by the univariate t test and the multivariate methods discriminant partial least squares, random forest, and a robust method based on the log ratios of all variable pairs. The results confirm the presence of organic substances in cometary matter-probably a complex macromolecular mixture.
  •  
8.
  • Aad, G, et al. (författare)
  • 2015
  • swepub:Mat__t
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy