SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Cottrell Richard) "

Sökning: WFRF:(Cottrell Richard)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cao, Ling, et al. (författare)
  • Vulnerability of blue foods to human-induced environmental change
  • 2023
  • Ingår i: Nature Sustainability. - 2398-9629. ; 6, s. 1186-1198
  • Tidskriftsartikel (refereegranskat)abstract
    • Global aquatic foods are a key source of nutrition, but how their production is influenced by anthropogenic environmental changes is not well known. The vulnerability of global blue food systems to main environmental stressors and the related spatial impacts across blue food nations are now quantified. Global aquatic or 'blue' foods, essential to over 3.2 billion people, face challenges of maintaining supply in a changing environment while adhering to safety and sustainability standards. Despite the growing concerns over their environmental impacts, limited attention has been paid to how blue food production is influenced by anthropogenic environmental changes. Here we assess the vulnerability of global blue food systems to predominant environmental disturbances and predict the spatial impacts. Over 90% of global blue food production faces substantial risks from environmental change, with the major producers in Asia and the United States facing the greatest threats. Capture fisheries generally demonstrate higher vulnerability than aquaculture in marine environments, while the opposite is true in freshwater environments. While threats to production quantity are widespread across marine and inland systems, food safety risks are concentrated within a few countries. Identifying and supporting mitigation and adaptation measures in response to environmental stressors is particularly important in developing countries in Asia, Latin America and Africa where risks are high and national response capacities are low. These findings lay groundwork for future work to map environmental threats and opportunities, aiding strategic planning and policy development for resilient and sustainable blue food production under changing conditions.
  •  
2.
  • Cottrell, Richard, et al. (författare)
  • Food production shocks across land and sea
  • 2019
  • Ingår i: Nature Sustainability. - : Springer Science and Business Media LLC. - 2398-9629. ; 2, s. 130-137
  • Tidskriftsartikel (refereegranskat)abstract
    • Sudden losses to food production (that is, shocks) and their consequences across land and sea pose cumulative threats to global sustainability. We conducted an integrated assessment of global production data from crop, livestock, aquaculture and fisheries sectors over 53 years to understand how shocks occurring in one food sector can create diverse and linked challenges among others. We show that some regions are shock hotspots, exposed frequently to shocks across multiple sectors. Critically, shock frequency has increased through time on land and sea at a global scale. Geopolitical and extreme-weather events were the main shock drivers identified, but with considerable differences across sectors. We illustrate how social and ecological drivers, influenced by the dynamics of the food system, can spill over multiple food sectors and create synchronous challenges or trade-offs among terrestrial and aquatic systems. In a more shock-prone and interconnected world, bold food policy and social protection mechanisms that help people anticipate, cope with and recover from losses will be central to sustainability. © 2019, The Author(s), under exclusive licence to Springer Nature Limited.
  •  
3.
  • Cottrell, Richard S., et al. (författare)
  • Time to rethink trophic levels in aquaculture policy
  • 2021
  • Ingår i: Reviews in Aquaculture. - : Wiley. - 1753-5123 .- 1753-5131. ; 13:3, s. 1583-1593
  • Tidskriftsartikel (refereegranskat)abstract
    • Aquaculture policy often promotes production of low-trophic level species for sustainable industry growth. Yet, the application of the trophic level concept to aquaculture is complex, and its value for assessing sustainability is further complicated by continual reformulation of feeds. The majority of fed farmed fish and invertebrate species are produced using human-made compound feeds that can differ markedly from the diet of the same species in the wild and continue to change in composition. Using data on aquaculture feeds, we show that technical advances have substantially decreased the mean effective trophic level of farmed species, such as salmon (mean TL = 3.48 to 2.42) and tilapia (2.32 to 2.06), from 1995 to 2015. As farmed species diverge in effective trophic level from their wild counterparts, they are coalescing at a similar effective trophic level due to standardisation of feeds. This pattern blurs the interpretation of trophic level in aquaculture because it can no longer be viewed as a trait of the farmed species, but rather is a dynamic feature of the production system. Guidance based on wild trophic position or historical resource use is therefore misleading. Effective aquaculture policy needs to avoid overly simplistic sustainability indicators such as trophic level. Instead, employing empirically derived metrics based on the specific farmed properties of species groups, management techniques and advances in feed formulation will be crucial for achieving truly sustainable options for farmed seafood.
  •  
4.
  • Love, David C., et al. (författare)
  • Emerging COVID-19 impacts, responses, and lessons for building resilience in the seafood system
  • 2021
  • Ingår i: Global food security. - : Elsevier BV. - 2211-9124. ; 28
  • Tidskriftsartikel (refereegranskat)abstract
    • The COVID-19 pandemic and subsequent lockdowns are creating health and economic crises that threaten food and nutrition security. The seafood sector provides important sources of nutrition and employment, especially in low-income countries, and is highly globalized allowing shocks to propagate. We studied COVID-19-related disruptions, impacts, and responses to the seafood sector from January through May 2020, using a food system resilience ‘action cycle’ framework as a guide. We find that some supply chains, market segments, companies, small-scale actors and civil society have shown initial signs of greater resilience than others. COVID-19 has also highlighted the vulnerability of certain groups working in- or dependent on the seafood sector. We discuss early coping and adaptive responses combined with lessons from past shocks that could be considered when building resilience in the sector. We end with strategic research needs to support learning from COVID-19 impacts and responses.
  •  
5.
  • Partelow, Stefan, et al. (författare)
  • Aquaculture governance : five engagement arenas for sustainability transformation
  • 2023
  • Ingår i: Current Opinion in Environmental Sustainability. - 1877-3435 .- 1877-3443. ; 65
  • Tidskriftsartikel (refereegranskat)abstract
    • A greater focus on governance is needed to facilitate effective and substantive progress toward sustainability transformations in the aquaculture sector. Concerted governance efforts can help move the sector beyond fragmented technical questions associated with intensification and expansion, social and environmental impacts, and toward system-based approaches that address interconnected sustainability issues. Through a review and expert-elicitation process, we identify five engagement arenas to advance a governance agenda for aquaculture sustainability transformation: (1) setting sustainability transformation goals, (2) cross-sectoral linkages, (3) land–water–sea connectivity, (4) knowledge and innovation, and (5) value chains. We then outline the roles different actors and modes of governance can play in fostering sustainability transformations, and discuss action items for researchers, practitioners, and policymakers to operationalize activities within their engagement arenas.
  •  
6.
  • Singh, Gerald G., et al. (författare)
  • Climate impacts on the ocean are making the Sustainable Development Goals a moving target travelling away from us
  • 2019
  • Ingår i: People and Nature. - : John Wiley & Sons. - 2575-8314. ; 1:3, s. 317-330
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate change is impacting marine ecosystems and their goods and services in diverse ways, which can directly hinder our ability to achieve the Sustainable Development Goals (SDGs), set out under the 2030 Agenda for Sustainable Development.Through expert elicitation and a literature review, we find that most climate change effects have a wide variety of negative consequences across marine ecosystem services, though most studies have highlighted impacts from warming and consequences of marine species.Climate change is expected to negatively influence marine ecosystem services through global stressors—such as ocean warming and acidification—but also by amplifying local and regional stressors such as freshwater runoff and pollution load.Experts indicated that all SDGs would be overwhelmingly negatively affected by these climate impacts on marine ecosystem services, with eliminating hunger being among the most directly negatively affected SDG.Despite these challenges, the SDGs aiming to transform our consumption and production practices and develop clean energy systems are found to be least affected by marine climate impacts. These findings represent a strategic point of entry for countries to achieve sustainable development, given that these two goals are relatively robust to climate impacts and that they are important pre-requisite for other SDGs.Our results suggest that climate change impacts on marine ecosystems are set to make the SDGs a moving target travelling away from us. Effective and urgent action towards sustainable development, including mitigating and adapting to climate impacts on marine systems are important to achieve the SDGs, but the longer this action stalls the more distant these goals will become.
  •  
7.
  • Troell, Max, 1962-, et al. (författare)
  • Perspectives on aquaculture's contribution to the Sustainable Development Goals for improved human and planetary health
  • 2023
  • Ingår i: Journal of the World Aquaculture Society. - 0893-8849 .- 1749-7345. ; 54:2, s. 251-342
  • Forskningsöversikt (refereegranskat)abstract
    • The diverse aquaculture sector makes important contributions toward achieving the Sustainable Development Goals (SDGs)/Agenda 2030, and can increasingly do so in the future. Its important role for food security, nutrition, livelihoods, economies, and cultures is not clearly visible in the Agenda 21 declaration. This may partly reflect the state of development of policies for aquaculture compared with its terrestrial counterpart, agriculture, and possibly also because aquaculture production has historically originated from a few key hotspot regions/countries. This review highlights the need for better integration of aquaculture in global food system dialogues. Unpacking aquaculture's diverse functions and generation of values at multiple spatiotemporal scales enables better understanding of aquaculture's present and future potential contribution to the SDGs. Aquaculture is a unique sector that encompasses all aquatic ecosystems (freshwater, brackish/estuarine, and marine) and is also tightly interconnected with terrestrial ecosystems through, for example, feed resources and other dependencies. Understanding environmental, social, and economic characteristics of the multifaceted nature of aquaculture provides for more context-specific solutions for addressing both opportunities and challenges for its future development. This review includes a rapid literature survey based on how aquaculture links to the specific SDG indicators. A conceptual framework is developed for communicating the importance of context specificity related to SDG outcomes from different types of aquaculture. The uniqueness of aquaculture's contributions compared with other food production systems are discussed, including understanding of species/systems diversity, the role of emerging aquaculture, and its interconnectedness with supporting systems. A selection of case studies is presented to illustrate: (1) the diversity of the aquaculture sector and what role this diversity can play for contributions to the SDGs, (2) examples of methodologies for identification of aquaculture's contribution to the SDGs, and (3) trade-offs between farming systems' contribution to meeting the SDGs. It becomes clear that decision-making around resource allocation and trade-offs between aquaculture and other aquatic resource users needs review of a wide range of established and emergent systems. The review ends by highlighting knowledge gaps and pathways for transformation that will allow further strengthening of aquaculture's role for contributing to the SDGs. This includes identification and building on already existing monitoring that can enable capturing SDG-relevant aquaculture statistics at a national level and discussion of how a cohesive and comprehensive aquaculture strategy, framed to meet the SDGs, may help countries to prioritize actions for improving well-being.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy