SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Couapel Martine) "

Sökning: WFRF:(Couapel Martine)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cartier, Rosine, et al. (författare)
  • Diatom-oxygen isotope record from high-altitude Lake Petit (2200 m a.s.l.) in the Mediterranean Alps : Shedding light on a climatic pulse at 4.2 ka
  • 2019
  • Ingår i: Climate of the Past. - : Copernicus GmbH. - 1814-9324 .- 1814-9332. ; 15:1, s. 253-263
  • Tidskriftsartikel (refereegranskat)abstract
    • In the Mediterranean area, the 4.2 ka BP event is recorded with contrasting expressions between regions. In the southern Alps, the high-altitude Lake Petit (Mercantour Massif, France; 2200 m a.s.l.) offers pollen and diatom-rich sediments covering the last 4800 years. A multi-proxy analysis recently revealed a detrital pulse around 4200 cal BP due to increasing erosion in the lake catchment. The involvement of a rapid climate change leading to increasing runoff and soil erosion was proposed. Here, in order to clarify this hypothesis, we measured the oxygen isotope composition of diatom silica frustules (δ 18 O diatom ) from the same sedimentary core. Diatoms were analysed by laser fluorination isotope ratio mass spectrometry after an inert gas flow dehydration. We additionally enhanced the accuracy of the age-depth model using the Bacon R package. The δ 18 O diatom record allows us to identify a 500-year time lapse, from 4400 to 3900 cal BP, where δ 18 O diatom reached its highest values (> 31). δ 18 O diatom was about 3 ‰ higher than the modern values and the shifts at 4400 and 3900 cal BP were of similar amplitude as the seasonal δ 18 O diatom shifts occurring today. This period of high δ 18 O diatom values can be explained by the intensification of 18O-enriched Mediterranean precipitation events feeding the lake during the ice-free season. This agrees with other records from the southern Alps suggesting runoff intensification around 4200 cal BP. Possible changes in other climatic parameters may have played a concomitant role, including a decrease in the contribution of 18 Odepleted Atlantic winter precipitation to the lake water due to snow deficit. Data recording the 4.2 ka BP event in the northwestern Mediterranean area are still sparse. In the Lake Petit watershed, the 4.2 ka BP event translated into a change in precipitation regime from 4400 to 3900 cal BP. This record contributes to the recent efforts to characterize and investigate the geographical extent of the 4.2 ka BP event in the Mediterranean area.
  •  
2.
  • Meister, Philip, et al. (författare)
  • A global compilation of diatom silica oxygen isotope records from lake sediment - trends and implications for climate reconstruction
  • 2024
  • Ingår i: Climate of the Past. - 1814-9324. ; 20:2, s. 363-392
  • Tidskriftsartikel (refereegranskat)abstract
    • Oxygen isotopes in biogenic silica (δ18OBSi) from lake sediments allow for quantitative reconstruction of past hydroclimate and proxy-model comparison in terrestrial environments. The signals of individual records have been attributed to different factors, such as air temperature (Tair), atmospheric circulation patterns, hydrological changes, and lake evaporation. While every lake has its own local set of drivers of δ18O variability, here we explore the extent to which regional or even global signals emerge from a series of paleoenvironmental records. This study provides a comprehensive compilation and combined statistical evaluation of the existing lake sediment δ18OBSi records, largely missing in other summary publications (i.e. PAGES network). For this purpose, we have identified and compiled 71 down-core records published to date and complemented these datasets with additional lake basin parameters (e.g. lake water residence time and catchment size) to best characterize the signal properties. Records feature widely different temporal coverage and resolution, ranging from decadal-scale records covering the past 150 years to records with multi-millennial-scale resolution spanning glacial-interglacial cycles. The best coverage in number of records (NCombining double low line37) and data points (NCombining double low line2112) is available for Northern Hemispheric (NH) extratropical regions throughout the Holocene (roughly corresponding to Marine Isotope Stage 1; MIS 1). To address the different variabilities and temporal offsets, records were brought to a common temporal resolution by binning and subsequently filtered for hydrologically open lakes with lake water residence times <100 years. For mid- to high-latitude (>45°N) lakes, we find common δ18OBSi patterns among the lake records during both the Holocene and Common Era (CE). These include maxima and minima corresponding to known climate episodes, such as the Holocene Thermal Maximum (HTM), Neoglacial Cooling, Medieval Climate Anomaly (MCA) and the Little Ice Age (LIA). These patterns are in line with long-term air temperature changes supported by previously published climate reconstructions from other archives, as well as Holocene summer insolation changes. In conclusion, oxygen isotope records from NH extratropical lake sediments feature a common climate signal at centennial (for CE) and millennial (for Holocene) timescales despite stemming from different lakes in different geographic locations and hence constitute a valuable proxy for past climate reconstructions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy