SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Coudert B) "

Sökning: WFRF:(Coudert B)

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Major, B., et al. (författare)
  • Macroscopic Optimization of High Harmonic Generation for High Power Laser Pulses
  • 2016
  • Ingår i: High Intensity Lasers and High Field Phenomena, HILAS 2016. - 9781943580095 ; Part F15-HILAS 2016
  • Konferensbidrag (refereegranskat)abstract
    • We study upscaling of gas high harmonic generation, to make efficient use of the ever increasing laser pulse powers. Loose focusing geometries optimizing phasematching are investigated and compared in HHG efficiency to shorter focusing arrangements.
  •  
4.
  • Valiente-Dobon, J. J., et al. (författare)
  • Conceptual design of the AGATA 2 pi array at LNL
  • 2023
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 1049
  • Tidskriftsartikel (refereegranskat)abstract
    • The Advanced GAmma Tracking Array (AGATA) has been installed at Laboratori Nazionali di Legnaro (LNL), Italy. In this installation, AGATA will consist, at the beginning, of 13 AGATA triple clusters (ATCs) with an angular coverage of 1n,and progressively the number of ATCs will increase up to a 2 pi angular coverage. This setup will exploit both stable and radioactive ion beams delivered by the Tandem-PIAVE-ALPI accelerator complex and the SPES facility. The new implementation of AGATA at LNL will be used in two different configurations, firstly one coupled to the PRISMA large-acceptance magnetic spectrometer and lately a second one at Zero Degrees, along the beam line. These two configurations will allow us to cover a broad physics program, using different reaction mechanisms, such as Coulomb excitation, fusion-evaporation, transfer and fission at energies close to the Coulomb barrier. These setups have been designed to be coupled with a large variety of complementary detectors such as charged particle detectors, neutron detectors, heavy-ion detectors, high-energy gamma-ray arrays, cryogenic and gasjet targets and the plunger device for lifetime measurements. We present in this paper the conceptual design, characteristics and performance figures of this implementation of AGATA at LNL.
  •  
5.
  • Manschwetus, B., et al. (författare)
  • Two-photon double ionization of neon studied with intense attosecond pulse trains
  • 2016
  • Ingår i: International Conference on Ultrafast Phenomena, UP 2016. - 9781943580187 ; Part F20-UP 2016
  • Konferensbidrag (refereegranskat)abstract
    • We focused an intense attosecond pulse train into a neon gas target and observed Ne2+ resulting from two-photon double ionization. By modifying the photon spectrum we find that the process is dominated by the sequential ionization via the Ne+ ion.
  •  
6.
  • Manschwetus, B., et al. (författare)
  • Two-photon double ionization of neon using an intense attosecond pulse train
  • 2016
  • Ingår i: Physical Review A. - : American Physical Society (APS). - 2469-9926 .- 2469-9934. ; 93:6
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a demonstration of two-photon double ionization of neon using an intense extreme ultraviolet (XUV) attosecond pulse train (APT) in a photon energy regime where both direct and sequential mechanisms are allowed. For an APT generated through high-order harmonic generation (HHG) in argon we achieve a total pulse energy close to 1μJ, a central energy of 35 eV, and a total bandwidth of ∼30 eV. The APT is focused by broadband optics in a neon gas target to an intensity of 3×1012Wcm−2. By tuning the photon energy across the threshold for the sequential process the double ionization signal can be turned on and off, indicating that the two-photon double ionization predominantly occurs through a sequential process. The demonstrated performance opens up possibilities for future XUV-XUV pump-probe experiments with attosecond temporal resolution in a photon energy range where it is possible to unravel the dynamics behind direct versus sequential double ionization and the associated electron correlation effects.
  •  
7.
  • Arnold, Cord L., et al. (författare)
  • Spatiotemporal coupling of attosecond pulses
  • 2019
  • Ingår i: 2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2019. - 9781728104690 ; Part F140-CLEO_Europe 2019
  • Konferensbidrag (refereegranskat)abstract
    • Attosecond pulses in the extreme ultraviolet (XUV) spectral range are today routinely generated via high-order harmonic generation (HHG), when intense ultrashort laser pulses are focused into a gaseous generation medium. The effect is most easily understood in a semi-classical picture [1]. An electron can tunnel ionize from the distorted atomic potential, pick up kinetic energy in the laser field, potentially return to its parent ion and recombine. The excess energy is emitted as XUV photon. The process repeats for every half-cycle of the driving field, resulting in a train of attosecond pulses and in the frequency domain in the well-known, odd-order comb of harmonics. Two main families of electron trajectories leading to the same photon energy can be distinguished into 'short' and 'long', according to their time of travel in the continuum. Due to the complicated nature of the HHG process, attosecond pulses usually cannot be separated into their temporal and spatial profiles, but instead have strong chromatic aberration and are spatio-temporally coupled [2-4].
  •  
8.
  • Jaworski, G., et al. (författare)
  • The New Neutron Multiplicity Filter NEDA and Its First Physics Campaign with AGATA
  • 2019
  • Ingår i: Acta Physica Polonica B. - 0587-4254 .- 1509-5770. ; 50:3, s. 585-590
  • Tidskriftsartikel (refereegranskat)abstract
    • A new neutron multiplicity filter NEDA, after a decade of design, R&D and construction, was employed in its first physics campaign with the AGATA spectrometer. Properties and performance of the array are discussed.
  •  
9.
  • Maclot, Sylvain, et al. (författare)
  • Dissociation dynamics of the diamondoid adamantane upon photoionization by XUV femtosecond pulses
  • 2020
  • Ingår i: Scientific Reports. - : Nature Research. - 2045-2322. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • This work presents a photodissociation study of the diamondoid adamantane using extreme ultraviolet femtosecond pulses. The fragmentation dynamics of the dication is unraveled by the use of advanced ion and electron spectroscopy giving access to the dissociation channels as well as their energetics. To get insight into the fragmentation dynamics, we use a theoretical approach combining potential energy surface determination, statistical fragmentation methods and molecular dynamics simulations. We demonstrate that the dissociation dynamics of adamantane dications takes place in a two-step process: barrierless cage opening followed by Coulomb repulsion-driven fragmentation.
  •  
10.
  • Maclot, Sylvain, et al. (författare)
  • Photodissociation dynamics of the diamondoid adamantane induced by attosecond XUV pulses
  • 2020
  • Ingår i: 31st international conference on photonic, electronic and atomic collisions (icpeac xxxi). - : IOP Publishing. ; 1412
  • Konferensbidrag (refereegranskat)abstract
    • Adamantane is the simplest of the diamondoid molecules, which due to their high stability are of high interest both in astrophysics and nanotechnology. This work investigates the molecular photodissociation after ionization by attosecond XUV pulses. The fragmentation dynamics is inferred by means of velocity map imaging spectrometry, covariance analysis techniques and quantum chemistry calculations.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy