SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Couto Rafael Carvalho) "

Sökning: WFRF:(Couto Rafael Carvalho)

  • Resultat 1-10 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Carravetta, V, et al. (författare)
  • X-ray absorption of molecular cations-a new challenge for electronic structure theory
  • 2022
  • Ingår i: Journal of Physics. - : IOP Publishing. - 0953-8984 .- 1361-648X. ; 34:36, s. 363002-
  • Forskningsöversikt (refereegranskat)abstract
    • In this paper we put forward some historical notes on the development of computational chemistry toward applications of x-ray spectroscopies. We highlight some of the important contributions by Enrico Clementi as method and program developer and as a supporter of this branch of computational research. We bring up a modern example based on the very recent experimental development of x-ray absorption of cationic molecules. As we show this spectroscopy poses new challenges for electronic structure theory and the electron correlation problem.
  •  
2.
  • Carvalho Couto, Rafael, 1987- (författare)
  • Coupled electron-nuclear dynamics in inelastic X-ray scattering
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This Thesis is devoted to theoretical and experimental studies of resonant inelastic X-ray scattering (RIXS) of carbon monoxide and water molecules. Using state-of-the-art ab initio electronic structure calculations and a time-dependent wave packet formalism, we make a complete analysis of the experimental RIXS spectra of the two molecular systems. In the CO RIXS analysis, we are able to reproduce the RIXS experiment with an excellent accuracy. Interference between different RIXS channels corresponding to the scattering via orthogonal molecular orbitals in the core-excited state of CO is described. We show the complete breakdown of the Born-Oppenheimer approximation in the region where forbidden final Rydberg states are mixed with a valence allowed final state. Here we explain the formation of a spectral feature which was attributed to a single state in previous studies. Moreover, through an experimental-theoretical combination, we improve the minimum of the valence E’Π excited state potential, along with the coupling constant between two Rydberg states. We developed a new theoretical approach to describe triatomic molecules through the wave packet propagation formalism to study the water system, which reproduces with high accuracy the vibrational structure of the high-resolution experimental quasi-elastic RIXS spectra. We demonstrate that due to the vibrational mode coupling and anharmonicity of the ground and core-excited potential energy surfaces, different core-excited states in RIXS can be used as gates to probe different vibrational dynamics and to map the ground state potential. Isotopic substitution is investigated by theoretical simulations and important dynamical features are discussed, especially for the dissociative core-excited state, where a so-called “atomic” peak is formed. We show the strong potential of high-resolution RIXS experiments combined with high-level theoretical simulations for advanced studies of highly excited molecular states.
  •  
3.
  • Chakraborty, Pratip, et al. (författare)
  • Deciphering Methylation Effects on S2(ππ*) Internal Conversion in the Simplest Linear α,β-Unsaturated Carbonyl
  • 2023
  • Ingår i: Journal of Physical Chemistry A. - : American Chemical Society (ACS). - 1089-5639 .- 1520-5215. ; 127:25, s. 5360-5373
  • Tidskriftsartikel (refereegranskat)abstract
    • Chemical substituents can influence photodynamics by altering the location of critical points and the topography of the potential energy surfaces (electronic effect) and by selectively modifying the inertia of specific nuclear modes (inertial effects). Using nonadiabatic dynamics simulations, we investigate the impact of methylation on S2(ππ*) internal conversion in acrolein, the simplest linear α,β-unsaturated carbonyl. Consistent with time constants reported in a previous time-resolved photoelectron spectroscopy study, S2 → S1 deactivation occurs on an ultrafast time scale (∼50 fs). However, our simulations do not corroborate the sequential decay model used to fit the experiment. Instead, upon reaching the S1 state, the wavepacket bifurcates: a portion undergoes ballistic S1 → S0 deactivation (∼90 fs) mediated by fast bond-length alternation motion, while the remaining decays on the picosecond time scale. Our analysis reveals that methyl substitution, generally assumed to mainly exert inertial influence, is also manifested in important electronic effects due to its weak electron-donating ability. While methylation at the β C atom gives rise to effects principally of an inertial nature, such as retarding the twisting motion of the terminal −CHCH3 group and increasing its coupling with pyramidalization, methylation at the α or carbonyl C atom modifies the potential energy surfaces in a way that also contributes to altering the late S1-decay behavior. Specifically, our results suggest that the observed slowing of the picosecond component upon α-methylation is a consequence of a tighter surface and reduced amplitude along the central pyramidalization, effectively restricting the access to the S1/S0-intersection seam. Our work offers new insight into the S2(ππ*) internal conversion mechanisms in acrolein and its methylated derivatives and highlights site-selective methylation as a tuning knob to manipulate photochemical reactions.
  •  
4.
  • Couto, Rafael Carvalho, et al. (författare)
  • Breaking inversion symmetry by protonation : Experimental and theoretical NEXAFS study of the diazynium ion, N2H
  • 2021
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - : Royal Society of Chemistry (RSC). - 1463-9076 .- 1463-9084. ; 23:32, s. 17166-17176
  • Tidskriftsartikel (refereegranskat)abstract
    • As an example of symmetry breaking in NEXAFS spectra of protonated species we present a high resolution NEXAFS spectrum of protonated dinitrogen, the diazynium ion N2H+. By ab initio calculations we show that the spectrum consists of a superposition of two nitrogen 1s absorption spectra, each including a π∗ band, and a nitrogen 1s to H+ charge transfer band followed by a weak irregular progression of high energy excitations. Calculations also show that, as an effect of symmetry breaking by protonation, the π∗ transitions are separated by 0.23 eV, only slightly exceeding the difference in the corresponding dark (symmetry forbidden) and bright (symmetry allowed) core excitations of neutral N2. By DFT and calculations and vibrational analysis, the complex π∗ excitation band of N2H+ is understood as due to the superposition of the significantly different vibrational progressions of excitations from terminal and central nitrogen atoms, both leading to bent final state geometries. We also show computationally that the electronic structure of the charge transfer excitation smoothly depends on the nitrogen-proton distance and that there is a clear extension of the spectra going from infinity to close nitrogen-proton distance where fine structures show some, although not fully detailed, similarities. An interesting feature of partial localization of the nitrogen core orbitals, with a strong, non-monotonous, variation with nitrogen-proton distance could be highlighted. Specific effects could be unraveled when comparing molecular cation NEXAFS spectra, as represented by recently recorded spectra of N2+ and CO+, and spectra of protonated molecules as represented here by the N2H+ ion. Both types containing rich physical effects not represented in NEXAFS of neutral molecules because of the positive charge, whereas protonation also breaks the symmetry. The effect of the protonation on dinitrogen can be separated in charge, which extends the high-energy part of the spectrum, and symmetry-breaking, which is most clearly seen in the low-energy π∗ transition.
  •  
5.
  • Couto, Rafael Carvalho, et al. (författare)
  • The carbon and oxygen K-edge NEXAFS spectra of CO
  • 2020
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - : Royal Society of Chemistry (RSC). - 1463-9076 .- 1463-9084. ; 22:28, s. 16215-16223
  • Tidskriftsartikel (refereegranskat)abstract
    • We present and analyze high resolution near edge X-ray absorption fine structure (NEXAFS) spectra of CO+ at the carbon and oxygen K-edges. The spectra show a wealth of features that appear very differently at the two K-edges. The analysis of these features can be divided into three parts; (i) repopulation transition to the open shell orbital – here the C(1s) or O(1s) to 5σ transition, where the normal core hole state is reached from a different initial state and different interaction than in X-ray photoelectron spectroscopy; (ii) spin coupled split valence bands corresponding to C(1s) or O(1s) to π* transitions; (iii) remainder weak and long progressions towards the double ionization potentials containing a manifold of peaks. These parts, none of which has correspondence in NEXAFS spectra of neutral molecules, are dictated by the localization of the singly occupied 5σ orbital, adding a dimension of chemistry to the ionic NEXAFS technique.
  •  
6.
  • Delcey, Mickael G, et al. (författare)
  • Efficient calculations of a large number of highly excited states for multiconfigurational wavefunctions
  • 2019
  • Ingår i: Journal of Computational Chemistry. - : Wiley. - 0192-8651 .- 1096-987X. ; 40:19, s. 1789-1799
  • Tidskriftsartikel (refereegranskat)abstract
    • Electronically excited states play important roles in many chemical reactions and spectroscopic techniques. In quantum chemistry, a common technique to solve excited states is the multiroot Davidson algorithm, but it is not designed for processes like X-ray spectroscopy that involves hundreds of highly excited states. We show how the use of a restricted active space wavefunction together with a projection operator to remove low-lying electronic states offers an efficient way to reach single and double-core-hole states. Additionally, several improvements to the stability and efficiency of the configuration interaction (CI) algorithm for a large number of states are suggested. When applied to a series of transition metal complexes the new CI algorithm does not only resolve divergence issues but also leads to typical reduction in computational time by 70%, with the largest savings for small molecules and large active spaces. Together, the projection operator and the improved CI algorithm now make it possible to simulate a wide range of single- and two-photon spectroscopies.
  •  
7.
  • Delcey, Mickael G., et al. (författare)
  • Exact semi-classical light-matter interaction operator applied to two-photon processes with strong relativistic effects
  • 2020
  • Ingår i: Journal of Chemical Physics. - : American Institute of Physics (AIP). - 0021-9606 .- 1089-7690. ; 153:2
  • Tidskriftsartikel (refereegranskat)abstract
    • X-ray processes involve interactions with high-energy photons. For these short wavelengths, the perturbing field cannot be treated as constant, and there is a need to go beyond the electric-dipole approximation. The exact semi-classical light-matter interaction operator offers several advantages compared to the multipole expansion such as improved stability and ease of implementation. Here, the exact operator is used to model x-ray scattering in metal K pre-edges. This is a relativistic two-photon process where absorption is dominated by electric-dipole forbidden transitions. With the restricted active space state-interaction approach, spectra can be calculated even for the multiconfigurational wavefunctions including second-order perturbation. However, as the operator itself depends on the transition energy, the cost for evaluating integrals for hundreds of thousands unique transitions becomes a bottleneck. Here, this is solved by calculating the integrals in a molecular-orbital basis that only runs over the active space, combined with a grouping scheme where the operator is the same for close-lying transitions. This speeds up the calculations of single-photon processes and is critical for the modeling of two-photon scattering processes. The new scheme is used to model Kα resonant inelastic x-ray scattering of iron-porphyrin complexes with relevance to studies of heme enzymes, for which the total computational time is reduced by several orders of magnitude with an effect on transition intensities of 0.1% or less.
  •  
8.
  • Eckert, Sebastian, et al. (författare)
  • One-dimensional cuts through multidimensional potential-energy surfaces by tunable x rays
  • 2018
  • Ingår i: Physical Review A: covering atomic, molecular, and optical physics and quantum information. - : AMER PHYSICAL SOC. - 2469-9926 .- 2469-9934. ; 97:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The concept of the potential-energy surface (PES) and directional reaction coordinates is the backbone of our description of chemical reaction mechanisms. Although the eigenenergies of the nuclear Hamiltonian uniquely link a PES to its spectrum, this information is in general experimentally inaccessible in large polyatomic systems. This is due to (near) degenerate rovibrational levels across the parameter space of all degrees of freedom, which effectively forms a pseudospectrum given by the centers of gravity of groups of close-lying vibrational levels. We show here that resonant inelastic x-ray scattering (RIXS) constitutes an ideal probe for revealing one-dimensional cuts through the ground-state PES of molecular systems, even far away from the equilibrium geometry, where the independent-mode picture is broken. We strictly link the center of gravity of close-lying vibrational peaks in RIXS to a pseudospectrum which is shown to coincide with the eigenvalues of an effective one-dimensional Hamiltonian along the propagation coordinate of the core-excited wave packet. This concept, combined with directional and site selectivity of the core-excited states, allows us to experimentally extract cuts through the ground-state PES along three complementary directions for the showcase H2O molecule.
  •  
9.
  • Guo, Meiyuan, et al. (författare)
  • Fingerprinting Electronic Structure of Heme Iron by Ab Initio Modeling of Metal L-Edge X-ray Absorption Spectra
  • 2019
  • Ingår i: Journal of Chemical Theory and Computation. - : American Chemical Society (ACS). - 1549-9618 .- 1549-9626. ; 15:1, s. 477-489
  • Tidskriftsartikel (refereegranskat)abstract
    • The capability of the multiconfigurational restricted active space approach to identify electronic structure from spectral fingerprints is explored by applying it to iron L-edge X-ray absorption spectroscopy (XAS) of three heme systems that represent the limiting descriptions of iron in the Fe-O-2 bond, ferrous and ferric [Fe(P)(ImH)(2)](0/1+) (P = porphine, ImH = imidazole), and Fe-II(P). The level of agreement between experimental and simulated spectral shapes is calculated using the cosine similarity, which gives a quantitative and unbiased assignment. Further dimensions in fingerprinting are obtained from the L-edge branching ratio, the integrated absorption intensity, and the edge position. The results show how accurate ab initio simulations of metal L-edge XAS can complement calculations of relative energies to identify unknown species in chemical reactions.
  •  
10.
  • Ideböhn, Veronica, 1992, et al. (författare)
  • Symmetry breaking in core-valence double ionisation of allene
  • 2023
  • Ingår i: Communications Chemistry. - : Springer Nature. - 2399-3669. ; 6:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Allene serves as a model to study multiple ionization of organic molecules. Here, the authors use synchrotron radiation-based multi-particle coincidence techniques and high-level ab initio calculations to propose a simple physical model to elucidate the symmetry breaking in core-valence double ionization of allene. Conventional electron spectroscopy is an established one-electron-at-the-time method for revealing the electronic structure and dynamics of either valence or inner shell ionized systems. By combining an electron-electron coincidence technique with the use of soft X-radiation we have measured a double ionisation spectrum of the allene molecule in which one electron is removed from a C1s core orbital and one from a valence orbital, well beyond Siegbahns Electron-Spectroscopy-for-Chemical-Analysis method. This core-valence double ionisation spectrum shows the effect of symmetry breaking in an extraordinary way, when the core electron is ejected from one of the two outer carbon atoms. To explain the spectrum we present a new theoretical approach combining the benefits of a full self-consistent field approach with those of perturbation methods and multi-configurational techniques, thus establishing a powerful tool to reveal molecular orbital symmetry breaking on such an organic molecule, going beyond Lowdins standard definition of electron correlation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 18
Typ av publikation
tidskriftsartikel (13)
annan publikation (3)
doktorsavhandling (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (13)
övrigt vetenskapligt/konstnärligt (5)
Författare/redaktör
Ågren, Hans (8)
Rubensson, Jan-Erik (6)
Lundberg, Marcus, 19 ... (5)
Lau, J. Tobias (4)
Carravetta, Vincenzo (4)
Odelius, Michael (4)
visa fler...
Guo, Meiyuan (3)
Zamudio-Bayer, Vicen ... (3)
Schmitt, Thorsten (3)
Pietzsch, Annette (3)
Söderström, Johan, 1 ... (3)
Carravetta, V. (3)
Kubin, Markus (2)
Timm, Martin (2)
Niskanen, Johannes (2)
Delcey, Mickael G. (2)
Fernández Galván, Ig ... (2)
Lindh, Roland, Profe ... (2)
Karlsson, Leif (1)
Nyman, Gunnar, 1957 (1)
Montorsi, Francesco (1)
Veryazov, Valera (1)
Agåker, Marcus (1)
Norman, Patrick (1)
Coriani, Sonia (1)
Lindh, Roland, 1958- (1)
Feifel, Raimund (1)
Alavi, Ali (1)
Sorensen, S. L. (1)
Squibb, Richard J. (1)
Eland, John H. D., 1 ... (1)
Wallner, Måns, 1992 (1)
Agren, Hans (1)
Battaglia, Stefano (1)
Aquilante, Francesco (1)
Gagliardi, Laura (1)
Autschbach, Jochen (1)
Baiardi, Alberto (1)
Chibotaru, Liviu F. (1)
Conti, Irene (1)
De Vico, Luca (1)
Ferre, Nicolas (1)
Garavelli, Marco (1)
Larsson, Ernst D. (1)
Nenov, Artur (1)
Olivucci, Massimo (1)
Pierloot, Kristine (1)
Reiher, Markus (1)
Schapiro, Igor (1)
Segarra-Marti, Javie ... (1)
visa färre...
Lärosäte
Kungliga Tekniska Högskolan (15)
Uppsala universitet (11)
Lunds universitet (5)
Göteborgs universitet (1)
Stockholms universitet (1)
Chalmers tekniska högskola (1)
Språk
Engelska (18)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (18)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy