SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Covaciu Lucian) "

Sökning: WFRF:(Covaciu Lucian)

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bosdotter Enroth, Sofia, et al. (författare)
  • Bilateral forearm intravenous regional anesthesia with prilocaine for botulinum toxin treatment of palmar hyperhidrosis
  • 2010
  • Ingår i: The Journal of American Academy of Dermatology. - : Elsevier BV. - 0190-9622 .- 1097-6787. ; 63:3, s. 466-474
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Treatment of palmar hyperhidrosis with botulinum toxin (BTX) requires effective anesthesia, but previous methods have not provided enough pain relief or have resulted in a prolonged impaired hand function. OBJECTIVE: This is a study of bilateral forearm intravenous regional anesthesia using prilocaine for BTX treatment of palmar hyperhidrosis. METHODS: In all, 166 patients (100 female and 66 male) were treated bilaterally with intracutaneous BTX type A injections using intravenous regional anesthesia with prilocaine (5 mg/mL). In a subgroup of patients, forearm nerves were studied with neurophysiologic methods and blood concentrations of prilocaine were measured. Pain evaluation with a visual analog scale was accompanied with a questionnaire about the treatment. RESULTS: In all, 95% of the patients answering the questionnaire (response rate 89%) were satisfied with the anesthetic effect. No serious adverse events occurred. There was a fast recovery of motor function (in median 6 minutes) and sensory function (in median 20 minutes). No subclinical signs of sensory nerve damage were found. LIMITATIONS: Recall and reporting bias are potential sources of limitations in this study. CONCLUSION: Bilateral forearm intravenous regional anesthesia provides an effective and well-tolerated anesthesia during BTX treatment of palmar hyperhidrosis.
  •  
2.
  • Covaciu, Lucian, 1964-, et al. (författare)
  • Brain temperature in healthy volunteers subjected to intranasal cooling
  • 2011
  • Ingår i: Intensive Care Medicine. - : Springer Science and Business Media LLC. - 0342-4642 .- 1432-1238. ; 37:8, s. 1277-1284
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Purpose: Intranasal cooling can be used to initiate therapeutic hypothermia. However, direct measurement of brain temperature is difficult and the intra-cerebral distribution of temperature changes with cooling is unknown. The purpose of this study was to measure the brain temperature of human volunteers subjected to intranasal cooling using non-invasive magnetic resonance (MR) methods.Methods: Intranasal balloons catheters circulated with saline at 20 °C were applied for 60 min in 10 healthy, unsedated volunteers. Brain temperature changes were measured and mapped using MR spectroscopic imaging (MRSI) and phase-mapping techniques. Heart rate and blood pressure were monitored throughout the experiment. Rectal temperature was measured before and after the cooling. Mini Mental State Examination (MMSE) test and nasal inspection were done before and after the cooling. Questionnaires about the subjects personal experience were filled after the experiment.Results: Brain temperature decrease measured by MRSI was -1.7 ± 0.8°C and by phase-mapping -1.8 ± 0.9°C at the end of cooling. Spatial distribution of temperature changes was relatively uniform. Rectal temperature decreased by -0.5 ± 0.3°C. The physiological parameters were stable and no shivering was reported. The volunteers remained alert during cooling and no cognitive dysfunctions were apparent at MMSE test. Postcooling nasal examination detected increased nasal secretion in 9 of the 10 volunteers. Volunteer’s acceptance of the method was good.   Conclusion: Both MR techniques revealed brain temperature reductions after 60 min intranasal cooling with balloons circulated with saline at 20 °C in healthy and unsedated volunteers.
  •  
3.
  • Covaciu, Lucian, et al. (författare)
  • Brain temperature in volunteers subjected to intranasal cooling
  • 2011
  • Ingår i: Intensive Care Medicine. - : Springer Science and Business Media LLC. - 0342-4642 .- 1432-1238. ; 37:8, s. 1277-1284
  • Tidskriftsartikel (refereegranskat)abstract
    • Intranasal cooling can be used to initiate therapeutic hypothermia. However, direct measurement of brain temperature is difficult and the intra-cerebral distribution of temperature changes with cooling is unknown. The purpose of this study was to measure the brain temperature of human volunteers subjected to intranasal cooling using non-invasive magnetic resonance (MR) methods. Intranasal balloons catheters circulated with saline at 20A degrees C were applied for 60 min in ten awake volunteers. No sedation was used. Brain temperature changes were measured and mapped using MR spectroscopic imaging (MRSI) and phase-mapping techniques. Heart rate and blood pressure were monitored throughout the experiment. Rectal temperature was measured before and after the cooling. Mini Mental State Examination (MMSE) test and nasal inspection were done before and after the cooling. Questionnaires about the subjects' personal experience were completed after the experiment. Brain temperature decrease measured by MRSI was -1.7 +/- A 0.8A degrees C and by phase-mapping -1.8 +/- A 0.9A degrees C (n = 9) at the end of cooling. Spatial distribution of temperature changes was relatively uniform. Rectal temperature decreased by -0.5 +/- A 0.3A degrees C (n = 5). The physiological parameters were stable and no shivering was reported. The volunteers remained alert during cooling and no cognitive dysfunctions were apparent in the MMSE test. Postcooling nasal examination detected increased nasal secretion in nine of the ten volunteers. Volunteers' acceptance of the method was good. Both MR techniques revealed brain temperature reductions after 60 min of intranasal cooling with balloons circulated with saline at 20A degrees C in awake, unsedated volunteers.
  •  
4.
  • Covaciu, Lucian, et al. (författare)
  • Human brain MR spectroscopy thermometry using metabolite aqueous-solution calibrations
  • 2010
  • Ingår i: Journal of Magnetic Resonance Imaging. - : Wiley. - 1053-1807 .- 1522-2586. ; 31:4, s. 807-814
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE: To estimate absolute brain temperature using proton MR spectroscopy ((1)H-MRS) and mean brain-body temperature difference of healthy human volunteers. MATERIALS AND METHODS: Chemical shift difference between temperature-dependent water spectral line position and temperature-stable metabolite spectral reference was used for the estimations of absolute brain temperature. Temperature calibrations constants were obtained from the spectra of the N-acetyl aspartate (NAA line at approximately 2.0 ppm), glycero-phosphocholine (GPC line at approximately 3.2 ppm), and creatine (Cr line at approximately 3.0 ppm) aqueous solutions with pH values within physiologically pertinent ranges. Single-voxel PRESS sequence (TR/TE 2000/80 ms) was used for this purpose. Brain temperature was determined by averaging the temperatures computed from water-Cho, water-Cr, and water-NAA chemical shift differences. RESULTS: The mean brain temperature of 18 healthy volunteers was 38.1 +/- 0.4 degrees C and mean brain-body (rectal) temperature difference was 1.3 +/- 0.4 degrees C. CONCLUSION: Improved accuracy of the temperature constants and averaging the temperatures computed from water-Cho, water-Cr, and water-NAA chemical shift differences increased the reliability of the brain temperature estimations.
  •  
5.
  •  
6.
  • Covaciu, Lucian, 1964- (författare)
  • Intranasal Cooling for Cerebral Hypothermia Treatment
  • 2010
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The controlled lowering of core body temperature to 32°C to 34°C is defined as therapeutic hypothermia (TH). Therapeutic hypothermia has been shown to improve neurological outcome and survival in unconscious patients successfully resuscitated after cardiac arrest. Brain temperature is important for cerebral protection therefore methods for primarily cooling the brain have also been explored. This thesis focuses on the likelihood that intranasal cooling can induce, maintain and control cerebral hypothermia. The method uses bilaterally introduced intranasal balloons circulated with cold saline. Selective brain cooling induced with this method was effectively accomplished in pigs with normal circulation while no major disturbances in systemic circulation or physiological variables were recorded. The temperature gradients between brain and body could be maintained for at least six hours. Intranasal balloon catheters were used for therapeutic hypothermia initiation and maintenance during and after successful resuscitation in pigs. Temperature reduction was also obtained by combined intranasal cooling and intravenous ice-cold fluids with possible additional benefits in terms of physiologic stability after cardiac arrest. Rewarming was possible via the intranasal balloons. In these studies brain temperature was recorded invasively by temperature probes inserted in the brain. The fast changes in pig’s brain temperature could also be tracked by a non-invasive method. High-spatial resolution magnetic resonance spectroscopic imaging (MRSI) without internal reference showed a good association with direct invasive temperature monitoring. In addition the mapping of temperature changes during brain cooling was also possible. In awake and unsedated volunteers subjected to intranasal cooling brain temperature changes were followed by two MR techniques. Brain cooling was shown by the previously calibrated high-spatial resolution MRSI and by the phase-mapping method. Intranasal cooling reduced body temperature slightly. The volunteers remained alert during cooling, the physiological parameters stable, and no shivering was reported.
  •  
7.
  • Covaciu, Lucian, et al. (författare)
  • Intranasal cooling with or without intravenous cold fluids during and after cardiac arrest in pigs
  • 2010
  • Ingår i: Acta Anaesthesiologica Scandinavica. - : Wiley. - 0001-5172 .- 1399-6576. ; 54:4, s. 494-501
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Intranasal balloon catheters circulated with cold saline have previously been used for the induction and maintenance of selective brain cooling in pigs with normal circulation. In the present study, we investigated the feasibility of therapeutic hypothermia initiation, maintenance and rewarming using such intranasal balloon catheters with or without addition of intravenous ice-cold fluids during and after cardiac arrest treatment in pigs. Material and methods: Cardiac arrest was induced in 20 anaesthetised pigs. Following 8 min of cardiac arrest and 1 min of cardiopulmonary resuscitation (CPR), cooling was initiated after randomisation with either intranasal cooling (N) or combined with intravenous ice-cold fluids (N+S). Hypothermia was maintained for 180 min, followed by 180 min of rewarming. Brain and oesophageal temperatures, haemodynamic variables and intracranial pressure (ICP) were recorded. Results: Brain temperatures reductions after cooling did not differ (3.8 +/- 0.7 degrees C in the N group and 4.3 +/- 1.5 degrees C in the N+S group; P=0.47). The corresponding body temperature reductions were 3.6 +/- 1.2 degrees C and 4.6 +/- 1.5 degrees C (P=0.1). The resuscitation outcome was similar in both groups. Mixed venous oxygen saturation was lower in the N group after cooling and rewarming (P=0.024 and 0.002, respectively) as compared with the N+S group. ICP was higher after rewarming in the N group (25.2 +/- 2.9 mmHg; P=0.01) than in the N+S group (15.7 +/- 3.3 mmHg). Conclusions: Intranasal balloon catheters can be used for therapeutic hypothermia initiation, maintenance and rewarming during CPR and after successful resuscitation in pigs.
  •  
8.
  • Covaciu, Lucian, et al. (författare)
  • Intranasal selective brain cooling in pigs
  • 2008
  • Ingår i: Resuscitation. - : Elsevier BV. - 0300-9572 .- 1873-1570. ; 78:1, s. 83-88
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Special clinical situations where general hypothermia cannot be recommended but can be a useful treatment demand a new approach, selective brain cooling. The purpose of this study was to selectively cool the brain with cold saline circulating in balloon catheters introduced into the nasal cavity in pigs. MATERIAL AND METHODS: Twelve anaesthetised pigs were subjected to selective cerebral cooling for a period of 6 h. Cerebral temperature was lowered by means of bilaterally introduced nasal balloon catheters perfused with saline cooled by a heat exchanger to 8-10 degrees C. Brain temperature was measured in both cerebral hemispheres. Body temperature was measured in rectum, oesophagus and the right atrium. The pigs were normoventilated and haemodynamic variables were measured continuously. Acid-base and electrolyte status was measured hourly. RESULTS: Cerebral hypothermia was induced rapidly and within the first 20 min of cooling cerebral temperature was lowered from 38.1+/-0.6 degrees C by a mean of 2.8+/-0.6 to 35.3+/-0.6 degrees C. Cooling was maintained for 6 h and the final brain temperature was 34.7+/-0.9 degrees C. Concomitantly, the body temperature, as reflected by oesophageal temperature was decreased from 38.3+/-0.5 to 36.6+/-0.9 degrees C. No circulatory or metabolic disturbances were noted. CONCLUSIONS: Inducing selective brain hypothermia with cold saline via nasal balloon catheters can effectively be accomplished in pigs, with no major disturbances in systemic circulation or physiological variables. The temperature gradients between brain and body can be maintained for at least 6 h.
  •  
9.
  • Gavali, Hamid, et al. (författare)
  • Editor's Choice - Prolonged ICU Length of Stay after AAA Repair : Analysis of Time Trends and Long-term Outcome
  • 2017
  • Ingår i: European Journal of Vascular and Endovascular Surgery. - : Elsevier BV. - 1078-5884 .- 1532-2165. ; 54:2, s. 157-163
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: The aim of the study was to investigate the frequency and outcome of prolonged intensive care unit (ICU) length of stay (LOS) after abdominal aortic aneurysm (AAA) repair in the endovascular era.Methods: All patients operated on for AAA between 1999 and 2013 at Uppsala University hospital were identified. Data were retrieved from the Swedish Vascular registry, the Swedish Intensive Care registry, the National Population registry, and case records. Prolonged ICU LOS was defined as >= 48 h during the primary hospital stay. Patients surviving >= 48 h after AAA surgery were included in the analysis.Results: A total of 725 patients were identified, of whom 707 (97.5%) survived >= 48 h; 563 (79.6%) underwent intact AAA repair and 144 (20.4%) ruptured AAA repair. A total of 548 patients (77.5%) required < 48 h of intensive care, 115 (16.3%) 2-6 days and 44 (6.2%) >= 7 days. The rate of prolonged ICU LOS declined considerably over time, from 41.4% of all AAA repairs in 1999 to 7.3% in 2013 (p < .001) whereas the use of endovascular aortic repair (EVAR) increased from 6.9% in 1999 to 78.0% in 2013 (p < .001). The 30 day survival rate was 98.2% for those with < 48 h ICU stay versus 93.0% for 2-6 days versus 81.8% for >= 7 days (p < .001); the corresponding 90 day survival was 97.1% versus 86.1% versus 63.6% (p < .001) respectively. For patients surviving 90 days after repair, there was no difference in long-term survival between the groups.Conclusion: During the period of progressively increasing use of EVAR, a simultaneous significant reduction in frequency of prolonged ICU LOS occurred. Although prolonged ICU LOS was associated with a high short-term mortality, long-term outcome among those surviving the initial 90 days was less affected.
  •  
10.
  • Hultström, Michael, 1978-, et al. (författare)
  • Limitations of the ARDS criteria during high-flow oxygen or non-invasive ventilation : evidence from critically ill COVID-19 patients
  • 2022
  • Ingår i: Critical Care. - : Springer Nature. - 1364-8535 .- 1466-609X. ; 26
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The ratio of partial pressure of arterial oxygen to inspired oxygen fraction (PaO2/FIO2) during invasive mechanical ventilation (MV) is used as criteria to grade the severity of respiratory failure in acute respiratory distress syndrome (ARDS). During the SARS-CoV2 pandemic, the use of PaO2/FIO2 ratio has been increasingly used in non-invasive respiratory support such as high-flow nasal cannula (HFNC) and non-invasive ventilation (NIV). The grading of hypoxemia in non-invasively ventilated patients is uncertain. The main hypothesis, investigated in this study, was that the PaO2/FIO2 ratio does not change when switching between MV, NIV and HFNC.Methods: We investigated respiratory function in critically ill patients with COVID-19 included in a single-center prospective observational study of patients admitted to the intensive care unit (ICU) at Uppsala University Hospital in Sweden. In a steady state condition, the PaO2/FIO2 ratio was recorded before and after any change between two of the studied respiratory support techniques (i.e., HFNC, NIV and MV).Results: A total of 148 patients were included in the present analysis. We find that any change in respiratory support from or to HFNC caused a significant change in PaO2/FIO2 ratio. Changes in respiratory support between NIV and MV did not show consistent change in PaO2/FIO2 ratio. In patients classified as mild to moderate ARDS during MV, the change from HFNC to MV showed a variable increase in PaO2/FIO2 ratio ranging between 52 and 140 mmHg (median of 127 mmHg). This made prediction of ARDS severity during MV from the apparent ARDS grade during HFNC impossible.Conclusions: HFNC is associated with lower PaO2/FIO2 ratio than either NIV or MV in the same patient, while NIV and MV provided similar PaO2/FIO2 and thus ARDS grade by Berlin definition. The large variation of PaO2/FIO2 ratio indicates that great caution should be used when estimating ARDS grade as a measure of pulmonary damage during HFNC.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy