SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Coxall Helen K.) "

Sökning: WFRF:(Coxall Helen K.)

  • Resultat 1-10 av 41
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cramwinckel, Margot J., et al. (författare)
  • A Warm, Stratified, and Restricted Labrador Sea Across the Middle Eocene and Its Climatic Optimum
  • 2020
  • Ingår i: Paleoceanography and Paleoclimatology. - 2572-4517 .- 2572-4525. ; 35:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Several studies indicate that North Atlantic Deep Water (NADW) formation might have initiated during the globally warm Eocene (56–34 Ma). However, constraints on Eocene surface ocean conditions in source regions presently conducive to deep water formation are sparse. Here we test whether ocean conditions of the middle Eocene Labrador Sea might have allowed for deep water formation by applying (organic) geochemical and palynological techniques, on sediments from Ocean Drilling Program (ODP) Site 647. We reconstruct a long‐term sea surface temperature (SST) drop from ~30°C to ~27°C between 41.5 to 38.5 Ma, based on TEX86. Superimposed on this trend, we record ~2°C warming in SST associated with the Middle Eocene Climatic Optimum (MECO; ~40 Ma), which is the northernmost MECO record as yet, and another, likely regional, warming phase at ~41.1 Ma, associated with low‐latitude planktic foraminifera and dinoflagellate cyst incursions. Dinoflagellate cyst assemblages together with planktonic foraminiferal stable oxygen isotope ratios overall indicate low surface water salinities and strong stratification. Benthic foraminifer stable carbon and oxygen isotope ratios differ from global deep ocean values by 1–2‰ and 2–4‰, respectively, indicating geographic basin isolation. Our multiproxy reconstructions depict a consistent picture of relatively warm and fresh but also highly variable surface ocean conditions in the middle Eocene Labrador Sea. These conditions were unlikely conducive to deep water formation. This implies either NADW did not yet form during the middle Eocene or it formed in a different source region and subsequently bypassed the southern Labrador Sea.
  •  
2.
  • Hutchinson, David K., et al. (författare)
  • The Eocene-Oligocene transition : a review of marine and terrestrial proxy data, models and model data comparisons
  • 2021
  • Ingår i: Climate of the Past. - : Copernicus GmbH. - 1814-9324 .- 1814-9332. ; 17:1, s. 269-315
  • Forskningsöversikt (refereegranskat)abstract
    • The Eocene-Oligocene transition (EOT) was a climate shift from a largely ice-free greenhouse world to an icehouse climate, involving the first major glaciation of Antarctica and global cooling occurring similar to 34 million years ago (Ma) and lasting similar to 790 kyr. The change is marked by a global shift in deep-sea delta O-18 representing a combination of deep-ocean cooling and growth in land ice volume. At the same time, multiple independent proxies for ocean temperature indicate sea surface cooling, and major changes in global fauna and flora record a shift toward more cold-climateadapted species. The two principal suggested explanations of this transition are a decline in atmospheric CO2 and changes to ocean gateways, while orbital forcing likely influenced the precise timing of the glaciation. Here we review and synthesise proxy evidence of palaeogeography, temperature, ice sheets, ocean circulation and CO2 change from the marine and terrestrial realms. Furthermore, we quantitatively compare proxy records of change to an ensemble of climate model simulations of temperature change across the EOT. The simulations compare three forcing mechanisms across the EOT: CO2 decrease, palaeogeographic changes and ice sheet growth. Our model ensemble results demonstrate the need for a global cooling mechanism beyond the imposition of an ice sheet or palaeogeographic changes. We find that CO2 forcing involving a large decrease in CO2 of ca. 40 % (similar to 325 ppm drop) provides the best fit to the available proxy evidence, with ice sheet and palaeogeographic changes playing a secondary role. While this large decrease is consistent with some CO2 proxy records (the extreme endmember of decrease), the positive feedback mechanisms on ice growth are so strong that a modest CO2 decrease beyond a critical threshold for ice sheet initiation is well capable of triggering rapid ice sheet growth. Thus, the amplitude of CO2 decrease signalled by our data-model comparison should be considered an upper estimate and perhaps artificially large, not least because the current generation of climate models do not include dynamic ice sheets and in some cases may be undersensitive to CO2 forcing. The model ensemble also cannot exclude the possibility that palaeogeographic changes could have triggered a reduction in CO2.
  •  
3.
  • Hutchinson, David K., et al. (författare)
  • The Eocene-Oligocene transition: a review of marine and terrestrial proxy data, models and model-data comparisons
  • 2021
  • Ingår i: Climate of the Past. - : European Geosciences Union (EGU). - 1814-9324 .- 1814-9332. ; 17:1, s. 269-315
  • Tidskriftsartikel (refereegranskat)abstract
    • The Eocene–Oligocene transition (EOT) was a climate shift from a largely ice-free greenhouse world to an icehouse climate, involving the first major glaciation of Antarctica and global cooling occurring ∼ 34 million years ago (Ma) and lasting ∼ 790 kyr. The change is marked by a global shift in deep-sea δ18O representing a combination of deep-ocean cooling and growth in land ice volume. At the same time, multiple independent proxies for ocean tempera- ture indicate sea surface cooling, and major changes in global fauna and flora record a shift toward more cold-climate- adapted species. The two principal suggested explanations of this transition are a decline in atmospheric CO2 and changes to ocean gateways, while orbital forcing likely influenced the precise timing of the glaciation. Here we review and synthesise proxy evidence of palaeogeography, temperature, ice sheets, ocean circulation and CO2 change from the marine and terrestrial realms. Furthermore, we quantitatively com- pare proxy records of change to an ensemble of climate model simulations of temperature change across the EOT. The simulations compare three forcing mechanisms across the EOT: CO2 decrease, palaeogeographic changes and ice sheet growth. Our model ensemble results demonstrate the need for a global cooling mechanism beyond the imposition of an ice sheet or palaeogeographic changes. We find that CO2 forcing involving a large decrease in CO2 of ca. 40 % (∼ 325 ppm drop) provides the best fit to the available proxy evidence, with ice sheet and palaeogeographic changes play- ing a secondary role. While this large decrease is consistent with some CO2 proxy records (the extreme endmember of decrease), the positive feedback mechanisms on ice growth are so strong that a modest CO2 decrease beyond a critical threshold for ice sheet initiation is well capable of triggering rapid ice sheet growth. Thus, the amplitude of CO2 decrease signalled by our data–model comparison should be consid- ered an upper estimate and perhaps artificially large, not least because the current generation of climate models do not in- clude dynamic ice sheets and in some cases may be under- sensitive to CO2 forcing. The model ensemble also cannot exclude the possibility that palaeogeographic changes could have triggered a reduction in CO2.
  •  
4.
  • Śliwińska, Kasia K., et al. (författare)
  • Sea surface temperature evolution of the North Atlantic Ocean across the Eocene-Oligocene transition
  • 2023
  • Ingår i: Climate of the Past. - : Copernicus GmbH. - 1814-9324 .- 1814-9332. ; 19:1, s. 123-140
  • Tidskriftsartikel (refereegranskat)abstract
    • A major step in the long-term Cenozoic evolution toward a glacially driven climate occurred at the Eocene–Oligocene transition (EOT), ∼34.44 to 33.65 million years ago (Ma). Evidence for high-latitude cooling and increased latitudinal temperature gradients across the EOT has been found in a range of marine and terrestrial environments. However, the timing and magnitude of temperature change in the North Atlantic remains highly unconstrained. Here, we use two independent organic geochemical palaeothermometers to reconstruct sea surface temperatures (SSTs) from the southern Labrador Sea (Ocean Drilling Program – ODP Site 647) across the EOT. The new SST records, now the most detailed for the North Atlantic through the 1 Myr leading up to the EOT onset, reveal a distinctive cooling step of ∼3 ∘C (from 27 to 24 ∘C), between 34.9 and 34.3 Ma, which is ∼500 kyr prior to Antarctic glaciation. This cooling step, when compared visually to other SST records, is asynchronous across Atlantic sites, signifying considerable spatiotemporal variability in regional SST evolution. However, overall, it fits within a phase of general SST cooling recorded across sites in the North Atlantic in the 5 Myr bracketing the EOT.Such cooling might be unexpected in light of proxy and modelling studies suggesting the start-up of the Atlantic Meridional Overturning Circulation (AMOC) before the EOT, which should warm the North Atlantic. Results of an EOT modelling study (GFDL CM2.1) help reconcile this, finding that a reduction in atmospheric CO2 from 800 to 400 ppm may be enough to counter the warming from an AMOC start-up, here simulated through Arctic–Atlantic gateway closure. While the model simulations applied here are not yet in full equilibrium, and the experiments are idealised, the results, together with the proxy data, highlight the heterogeneity of basin-scale surface ocean responses to the EOT thermohaline changes, with sharp temperature contrasts expected across the northern North Atlantic as positions of the subtropical and subpolar gyre systems shift. Suggested future work includes increasing spatial coverage and resolution of regional SST proxy records across the North Atlantic to identify likely thermohaline fingerprints of the EOT AMOC start-up, as well as critical analysis of the causes of inter-model responses to help better understand the driving mechanisms.
  •  
5.
  • Coxall, Helen K., et al. (författare)
  • Export of nutrient rich Northern Component Water preceded early Oligocene Antarctic glaciation
  • 2018
  • Ingår i: Nature Geoscience. - : Springer Science and Business Media LLC. - 1752-0894 .- 1752-0908. ; 11:3, s. 190-196
  • Tidskriftsartikel (refereegranskat)abstract
    • The onset of the North Atlantic Deep Water formation is thought to have coincided with Antarctic ice-sheet growth about 34 million years ago (Ma). However, this timing is debated, in part due to questions over the geochemical signature of the ancient Northern Component Water (NCW) formed in the deep North Atlantic. Here we present detailed geochemical records from North Atlantic sediment cores located close to sites of deep-water formation. We find that prior to 36 Ma, the northwestern Atlantic was stratified, with nutrient-rich, low-salinity bottom waters. This restricted basin transitioned into a conduit for NCW that began flowing southwards approximately one million years before the initial Antarctic glaciation. The probable trigger was tectonic adjustments in subarctic seas that enabled an increased exchange across the Greenland-Scotland Ridge. The increasing surface salinity and density strengthened the production of NCW. The late Eocene deep-water mass differed in its carbon isotopic signature from modern values as a result of the leakage of fossil carbon from the Arctic Ocean. Export of this nutrient-laden water provided a transient pulse of CO2 to the Earth system, which perhaps caused short-term warming, whereas the long-term effect of enhanced NCW formation was a greater northward heat transport that cooled Antarctica.
  •  
6.
  • Hutchinson, David K., et al. (författare)
  • Arctic closure as a trigger for Atlantic overturning at the Eocene-Oligocene Transition
  • 2019
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • The Eocene-Oligocene Transition (EOT), approximately 34 Ma ago, marks a period of major global cooling and inception of the Antarctic ice sheet. Proxies of deep circulation suggest a contemporaneous onset or strengthening of the Atlantic meridional overturning circulation (AMOC). Proxy evidence of gradual salinification of the North Atlantic and tectonically driven isolation of the Arctic suggest that closing the Arctic-Atlantic gateway could have triggered the AMOC at the EOT. We demonstrate this trigger of the AMOC using a new paleoclimate model with late Eocene boundary conditions. The control simulation reproduces Eocene observations of low Arctic salinities. Subsequent closure of the Arctic-Atlantic gateway triggers the AMOC by blocking freshwater inflow from the Arctic. Salt advection feedbacks then lead to cessation of overturning in the North Pacific. These circulation changes imply major warming of the North Atlantic Ocean, and simultaneous cooling of the North Pacific, but no interhemispheric change in temperatures.
  •  
7.
  • Hutchinson, David K., et al. (författare)
  • Climate sensitivity and meridional overturning circulation in the late Eocene using GFDL CM2.1
  • 2018
  • Ingår i: Climate of the Past. - : Copernicus GmbH. - 1814-9324 .- 1814-9332. ; 14:6, s. 789-810
  • Tidskriftsartikel (refereegranskat)abstract
    • The Eocene-Oligocene transition (EOT), which took place approximately 34 Ma ago, is an interval of great interest in Earth's climate history, due to the inception of the Antarctic ice sheet and major global cooling. Climate simulations of the transition are needed to help interpret proxy data, test mechanistic hypotheses for the transition and determine the climate sensitivity at the time. However, model studies of the EOT thus far typically employ control states designed for a different time period, or ocean resolution on the order of 3 degrees. Here we developed a new higher resolution palaeoclimate model configuration based on the GFDL CM2.1 climate model adapted to a late Eocene (38 Ma) palaeogeography reconstruction. The ocean and atmosphere horizontal resolutions are 1 degrees similar to 1.5 degrees and 3 degrees 3.75 ffi respectively. This represents a significant step forward in resolving the ocean geography, gateways and circulation in a coupled climate model of this period. We run the model under three different levels of atmospheric CO2: 400, 800 and 1600 ppm. The model exhibits relatively high sensitivity to CO2 compared with other recent model studies, and thus can capture the expected Eocene high latitude warmth within observed estimates of atmospheric CO2. However, the model does not capture the low meridional temperature gradient seen in proxies. Equatorial sea surface temperatures are too high in the model (3037 degrees C) compared with observations (max 32 degrees C), although observations are lacking in the warmest regions of the western Pacific. The model exhibits bipolar sinking in the North Pacific and Southern Ocean, which persists under all levels of CO2. North Atlantic surface salinities are too fresh to permit sinking (25-30 psu), due to surface transport from the very fresh Arctic (similar to 20 psu), where surface salinities approximately agree with Eocene proxy estimates. North Atlantic salinity increases by 1-2 psu when CO2 is halved, and similarly freshens when CO2 is doubled, due to changes in the hydrological cycle.
  •  
8.
  • Lunt, Daniel J., et al. (författare)
  • DeepMIP : model intercomparison of early Eocene climatic optimum (EECO) large-scale climate features and comparison with proxy data
  • 2021
  • Ingår i: Climate of the Past. - : Copernicus GmbH. - 1814-9324 .- 1814-9332. ; 17:1, s. 203-227
  • Tidskriftsartikel (refereegranskat)abstract
    • We present results from an ensemble of eight climate models, each of which has carried out simulations of the early Eocene climate optimum (EECO, similar to 50 million years ago). These simulations have been carried out in the framework of the Deep-Time Model Intercomparison Project (DeepMIP; http://www.deepmip.org , last access: 10 January 2021); thus, all models have been configured with the same paleogeographic and vegetation boundary conditions. The results indicate that these non-CO2 boundary conditions contribute between 3 and 5 degrees C to Eocene warmth. Compared with results from previous studies, the DeepMIP simulations generally show a reduced spread of the global mean surface temperature response across the ensemble for a given atmospheric CO2 concentration as well as an increased climate sensitivity on average. An energy balance analysis of the model ensemble indicates that global mean warming in the Eocene compared with the preindustrial period mostly arises from decreases in emissivity due to the elevated CO2 concentration (and associated water vapour and long-wave cloud feedbacks), whereas the reduction in the Eocene in terms of the meridional temperature gradient is primarily due to emissivity and albedo changes owing to the non-CO2 boundary conditions (i.e. the removal of the Antarctic ice sheet and changes in vegetation). Three of the models (the Community Earth System Model, CESM; the Geophysical Fluid Dynamics Laboratory, GFDL, model; and the Norwegian Earth System Model, NorESM) show results that are consistent with the proxies in terms of the global mean temperature, meridional SST gradient, and CO2, without prescribing changes to model parameters. In addition, many of the models agree well with the first-order spatial patterns in the SST proxies. However, at a more regional scale, the models lack skill. In particular, the modelled anomalies are substantially lower than those indicated by the proxies in the southwest Pacific; here, modelled continental surface air temperature anomalies are more consistent with surface air temperature proxies, implying a possible inconsistency between marine and terrestrial temperatures in either the proxies or models in this region. Our aim is that the documentation of the large-scale features and model-data comparison presented herein will pave the way to further studies that explore aspects of the model simulations in more detail, for example the ocean circulation, hydrological cycle, and modes of variability, and encourage sensitivity studies to aspects such as paleogeography, orbital configuration, and aerosols.
  •  
9.
  • Wunderling, Nico, 1992-, et al. (författare)
  • Climate tipping point interactions and cascades : a review
  • 2024
  • Ingår i: Earth System Dynamics. - 2190-4979 .- 2190-4987. ; 15:1, s. 41-74
  • Forskningsöversikt (refereegranskat)abstract
    • Climate tipping elements are large-scale subsystems of the Earth that may transgress critical thresholds (tipping points) under ongoing global warming, with substantial impacts on the biosphere and human societies. Frequently studied examples of such tipping elements include the Greenland Ice Sheet, the Atlantic Meridional Overturning Circulation (AMOC), permafrost, monsoon systems, and the Amazon rainforest. While recent scientific efforts have improved our knowledge about individual tipping elements, the interactions between them are less well understood. Also, the potential of individual tipping events to induce additional tipping elsewhere or stabilize other tipping elements is largely unknown. Here, we map out the current state of the literature on the interactions between climate tipping elements and review the influences between them. To do so, we gathered evidence from model simulations, observations, and conceptual understanding, as well as examples of paleoclimate reconstructions where multi-component or spatially propagating transitions were potentially at play. While uncertainties are large, we find indications that many of the interactions between tipping elements are destabilizing. Therefore, we conclude that tipping elements should not only be studied in isolation, but also more emphasis has to be put on potential interactions. This means that tipping cascades cannot be ruled out on centennial to millennial timescales at global warming levels between 1.5 and 2.0 ∘C or on shorter timescales if global warming surpassed 2.0 ∘C. At these higher levels of global warming, tipping cascades may then include fast tipping elements such as the AMOC or the Amazon rainforest. To address crucial knowledge gaps in tipping element interactions, we propose four strategies combining observation-based approaches, Earth system modeling expertise, computational advances, and expert knowledge.
  •  
10.
  • Anderson, Lloyd B., et al. (författare)
  • Atmospheric CO2 Estimates for the Late Oligocene and Early Miocene Using Multi-Species Cross-Calibrations of Boron Isotopes
  • 2024
  • Ingår i: Paleoceanography and Paleoclimatology. - 2572-4517 .- 2572-4525. ; 39:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The boron isotope (δ11B) proxy for seawater pH is a tried and tested means to reconstruct atmospheric CO2 in the geologic past, but uncertainty remains over how to treat species-specific calibrations that link foraminiferal δ11B to pH estimates prior to 22 My. In addition, no δ11B-based reconstructions of atmospheric CO2 exist for wide swaths of the Oligocene (33–23 Ma), and large variability in CO2 reconstructions during this epoch based on other proxy evidence leaves climate evolution during this period relatively unconstrained. To add to our understanding of Oligocene and early Miocene climate, we generated new atmospheric CO2 estimates from new δ11B data from fossil shells of surface-dwelling planktic foraminifera from the mid-Oligocene to early Miocene (∼28–18 Ma). We estimate atmospheric CO2 of ∼680 ppm for the mid-Oligocene, which then evolves to fluctuate between ∼500–570 ppm during the late Oligocene and between ∼420–700 ppm in the early Miocene. These estimates tend to trend higher than Oligo-Miocene CO2 estimates from other proxies, although we observe good proxy agreement in the late Oligocene. Reconstructions of CO2 fall lower than estimates from paleoclimate model simulations in the early Miocene and mid Oligocene, which indicates that more proxy and/or model refinement is needed for these periods. Our species cross-calibrations, assessing δ11B, Mg/Ca, δ18O, and δ13C, are able to pinpoint and evaluate small differences in the geochemistry of surface-dwelling planktic foraminifera, lending confidence to paleoceanographers applying this approach even further back in time.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 41
Typ av publikation
tidskriftsartikel (36)
forskningsöversikt (4)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (38)
övrigt vetenskapligt/konstnärligt (2)
populärvet., debatt m.m. (1)
Författare/redaktör
Coxall, Helen K. (34)
Lear, Caroline H. (10)
de Boer, Agatha M. (9)
Pearson, Paul N. (8)
Hutchinson, David K. (7)
O'Regan, Matt (6)
visa fler...
Lunt, Daniel J. (6)
Nilsson, Johan (5)
Ladant, Jean-Baptist ... (5)
Sliwinska, Kasia K. (5)
Backman, Jan (4)
Cronin, Thomas M. (4)
Steinthorsdottir, Ma ... (4)
Jakobsson, Martin (4)
Coxall, Helen (4)
Zhang, Zhongshi (4)
Huber, Matthew (4)
Wilson, Paul A. (4)
Dickens, Gerald R. (3)
O'Regan, Matthew (3)
Poulsen, Christopher ... (3)
Stranne, Christian (3)
Birch, Heather (3)
Kroon, Dick (3)
Piga, Emanuela (3)
Baatsen, Michiel (3)
Wade, Bridget S. (2)
Caballero, Rodrigo (2)
Aze, Tracy (2)
Lohmann, Gerrit (2)
Abe-Ouchi, Ayako (2)
Chan, Wing-Le (2)
Schmidt, Daniela N. (2)
Langebroek, Petra M. (2)
Sosdian, Sindia M. (2)
Schouten, Stefan (2)
Bown, Paul R. (2)
van de Flierdt, Tina (2)
Zachos, James C. (2)
Dunkley Jones, Tom (2)
Donnadieu, Yannick (2)
Niezgodzki, Igor (2)
Knorr, Gregor (2)
Steinig, Sebastian (2)
Zhu, Jiang (2)
Salzmann, Ulrich (2)
von der Heydt, Anna (2)
Kennedy-Asser, Alan ... (2)
Kunzmann, Lutz (2)
Moraweck, Karolin (2)
visa färre...
Lärosäte
Stockholms universitet (38)
Naturhistoriska riksmuseet (4)
Göteborgs universitet (2)
Uppsala universitet (1)
Språk
Engelska (41)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (41)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy