SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Cozzani G.) "

Sökning: WFRF:(Cozzani G.)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Breuillard, H., et al. (författare)
  • The Properties of Lion Roars and Electron Dynamics in Mirror Mode Waves Observed by the Magnetospheric MultiScale Mission
  • 2018
  • Ingår i: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 123:1, s. 93-103
  • Tidskriftsartikel (refereegranskat)abstract
    • Mirror mode waves are ubiquitous in the Earth's magnetosheath, in particular behind the quasi-perpendicular shock. Embedded in these nonlinear structures, intense lion roars are often observed. Lion roars are characterized by whistler wave packets at a frequency similar to 100Hz, which are thought to be generated in the magnetic field minima. In this study, we make use of the high time resolution instruments on board the Magnetospheric MultiScale mission to investigate these waves and the associated electron dynamics in the quasi-perpendicular magnetosheath on 22 January 2016. We show that despite a core electron parallel anisotropy, lion roars can be generated locally in the range 0.05-0.2f(ce) by the perpendicular anisotropy of electrons in a particular energy range. We also show that intense lion roars can be observed up to higher frequencies due to the sharp nonlinear peaks of the signal, which appear as sharp spikes in the dynamic spectra. As a result, a high sampling rate is needed to estimate correctly their amplitude, and the latter might have been underestimated in previous studies using lower time resolution instruments. We also present for the first-time 3-D high time resolution electron velocity distribution functions in mirror modes. We demonstrate that the dynamics of electrons trapped in the mirror mode structures are consistent with the Kivelson and Southwood (1996) model. However, these electrons can also interact with the embedded lion roars: first signatures of electron quasi-linear pitch angle diffusion and possible signatures of nonlinear interaction with high-amplitude wave packets are presented. These processes can lead to electron untrapping from mirror modes.
  •  
2.
  •  
3.
  • Webster, J. M., et al. (författare)
  • Magnetospheric Multiscale Dayside Reconnection Electron Diffusion Region Events
  • 2018
  • Ingår i: Journal of Geophysical Research - Space Physics. - : AMER GEOPHYSICAL UNION. - 2169-9380 .- 2169-9402. ; 123:6, s. 4858-4878
  • Tidskriftsartikel (refereegranskat)abstract
    • We use high-resolution data from dayside passes of the Magnetospheric Multiscale (MMS) mission to create for the first time a comprehensive listing of encounters with the electron diffusion region (EDR), as evidenced by electron agyrotropy, ion jet reversals, and j.E' > 0. We present an overview of these 32 EDR or near-EDR events, which demonstrate a wide variety of observed plasma behavior inside and surrounding the reconnection site. We analyze in detail three of the 21 new EDR encounters, which occurred within a 1-min-long interval on 23 November 2016. The three events, which resulted from a relatively low and oscillating magnetopause velocity, exhibited large electric fields (up to similar to 100 mV/m), crescent-shaped electron velocity phase space densities, large currents (>= 2 mu A/m(2)), and Ohmic heating of the plasma (similar to 10 nW/m(3)). We include an Ohm's law analysis, in which we show that the divergence of the electron pressure term usually dominates the nonideal terms and is much more turbulent on the magnetosphere versus the magnetosheath side of the EDR.
  •  
4.
  • Alho, M., et al. (författare)
  • Electron Signatures of Reconnection in a Global eVlasiator Simulation
  • 2022
  • Ingår i: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 49:14
  • Tidskriftsartikel (refereegranskat)abstract
    • Geospace plasma simulations have progressed toward more realistic descriptions of the solar wind-magnetosphere interaction from magnetohydrodynamic to hybrid ion-kinetic, such as the state-of-the-art Vlasiator model. Despite computational advances, electron scales have been out of reach in a global setting. eVlasiator, a novel Vlasiator submodule, shows for the first time how electromagnetic fields driven by global hybrid-ion kinetics influence electrons, resulting in kinetic signatures. We analyze simulated electron distributions associated with reconnection sites and compare them with Magnetospheric Multiscale (MMS) spacecraft observations. Comparison with MMS shows that key electron features, such as reconnection inflows, heated outflows, flat-top distributions, and bidirectional streaming, are in remarkable agreement. Thus, we show that many reconnection-related features can be reproduced despite strongly truncated electron physics and an ion-scale spatial resolution. Ion-scale dynamics and ion-driven magnetic fields are shown to be significantly responsible for the environment that produces electron dynamics observed by spacecraft in near-Earth plasmas.
  •  
5.
  • Chen, Z. Z., et al. (författare)
  • Electron-Driven Dissipation in a Tailward Flow Burst
  • 2019
  • Ingår i: Geophysical Research Letters. - : AMER GEOPHYSICAL UNION. - 0094-8276 .- 1944-8007. ; 46:11, s. 5698-5706
  • Tidskriftsartikel (refereegranskat)abstract
    • Traditionally, the magnetotail flow burst outside the diffusion region is known to carry ions and electrons together (V-i = V-e), with the frozen-in condition well satisfied (E + V-e x B = 0). Such picture, however, may not be true, based on our analyses of the high-resolution MMS (Magnetospheric Multiscale mission) data. We find that inside the flow burst the electrons and ions can be decoupled (V-e not equal V-i), with the electron speed 5 times larger than the ion speed. Such super-Alfvenic electron jet, having scale of 10 d(i) (ion inertial length) in X-GSM direction, is associated with electron demagnetization (E + V-e x B not equal 0), electron agyrotropy (crescent distribution), and O-line magnetic topology but not associated with the flow reversal and X-line topology; it can cause strong energy dissipation and electron heating. We quantitatively analyze the dissipation and find that it is primarily attributed to lower hybrid drift waves. These results emphasize the non-MHD (magnetohydrodynamics) behaviors of magnetotail flow bursts and the role of lower hybrid drift waves in dissipating energies.
  •  
6.
  • Cozzani, G., et al. (författare)
  • Direct Observations of Electron Firehose Fluctuations in the Magnetic Reconnection Outflow
  • 2023
  • Ingår i: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 128:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Electron temperature anisotropy-driven instabilities such as the electron firehose instability (EFI) are especially significant in space collisionless plasmas, where collisions are so scarce that wave-particle interactions are the leading mechanisms in the isotropization of the distribution function and energy transfer. Observational statistical studies provided convincing evidence in favor of the EFI constraining the electron distribution function and limiting the electron temperature anisotropy. Magnetic reconnection is characterized by regions of enhanced temperature anisotropy that could drive instabilities-including the electron firehose instability-affecting the particle dynamics and the energy conversion. However, in situ observations of the fluctuations generated by the EFI are still lacking and the interplay between magnetic reconnection and EFI is still largely unknown. In this study, we use high-resolution in situ measurements by the Magnetospheric Multiscale spacecraft to identify and investigate EFI fluctuations in the magnetic reconnection exhaust in the Earth's magnetotail. We find that the wave properties of the observed fluctuations largely agree with theoretical predictions of the non-propagating EF mode. These findings are further supported by comparison with the linear kinetic dispersion relation. Our results demonstrate that the magnetic reconnection outflow can be the seedbed of EFI and provide the first direct in situ observations of EFI-generated fluctuations.
  •  
7.
  • Dubart, M., et al. (författare)
  • Sub-grid modeling of pitch-angle diffusion for ion-scale waves in hybrid-Vlasov simulations with Cartesian velocity space
  • 2022
  • Ingår i: Physics of Plasmas. - : American Institute of Physics (AIP). - 1070-664X .- 1089-7674. ; 29:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Numerical simulations have grown to play a central role in modern sciences over the years. The ever-improving technology of supercomputers has made large and precise models available. However, this accuracy is often limited by the cost of computational resources. Lowering the simulation's spatial resolution in order to conserve resources can lead to key processes being unresolved. We have shown in a previous study how insufficient spatial resolution of the proton cyclotron instability leads to a misrepresentation of ion dynamics in hybrid-Vlasov simulations. This leads to larger than expected temperature anisotropy and loss-cone shaped velocity distribution functions. In this study, we present a sub-grid numerical model to introduce pitch-angle diffusion in a 3D Cartesian velocity space, at a spatial resolution where the relevant wave-particle interactions were previously not correctly resolved. We show that the method is successfully able to isotropize loss-cone shaped velocity distribution functions, and that this method could be applied to simulations in order to save computational resources and still correctly model wave-particle interactions.
  •  
8.
  • Schroeder, J. M., et al. (författare)
  • 2D Reconstruction of Magnetotail Electron Diffusion Region Measured by MMS
  • 2022
  • Ingår i: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 49:19
  • Tidskriftsartikel (refereegranskat)abstract
    • Models for collisionless magnetic reconnection in near-Earth space are distinctly characterized as 2D or 3D. In 2D kinetic models, the frozen-in law for the electron fluid is usually broken by laminar dynamics involving structures set by the electron orbit size, while in 3D models the width of the electron diffusion region is broadened by turbulent effects. We present an analysis of in situ spacecraft observations from the Earth's magnetotail of a fortuitous encounter with an active reconnection region, mapping the observations onto a 2D spatial domain. While the event likely was perturbed by low-frequency 3D dynamics, the structure of the electron diffusion region remains consistent with results from a 2D kinetic simulation. As such, the event represents a unique validation of 2D kinetic, and laminar reconnection models.
  •  
9.
  • Svenningsson, Ida, et al. (författare)
  • Kinetic Generation of Whistler Waves in the Turbulent Magnetosheath
  • 2022
  • Ingår i: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 49:15
  • Tidskriftsartikel (refereegranskat)abstract
    • The Earth's magnetosheath (MSH) is governed by numerous physical processes which shape the particle velocity distributions and contribute to the heating of the plasma. Among them are whistler waves which can interact with electrons. We investigate whistler waves detected in the quasi-parallel MSH by NASA's Magnetospheric Multiscale mission. We find that the whistler waves occur even in regions that are predicted stable to wave growth by electron temperature anisotropy. Whistlers are observed in ion-scale magnetic minima and are associated with electrons having butterfly-shaped pitch-angle distributions. We investigate in detail one example and, with the support of modeling by the linear numerical dispersion solver Waves in Homogeneous, Anisotropic, Multicomponent Plasmas, we demonstrate that the butterfly distribution is unstable to the observed whistler waves. We conclude that the observed waves are generated locally. The result emphasizes the importance of considering complete 3D particle distribution functions, and not only the temperature anisotropy, when studying plasma wave instabilities.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy