SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Cravens T.) "

Sökning: WFRF:(Cravens T.)

  • Resultat 1-10 av 30
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Coustenis, A., et al. (författare)
  • TandEM : Titan and Enceladus mission
  • 2009
  • Ingår i: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 23:3, s. 893-946
  • Tidskriftsartikel (refereegranskat)abstract
    • TandEM was proposed as an L-class (large) mission in response to ESA's Cosmic Vision 2015-2025 Call, and accepted for further studies, with the goal of exploring Titan and Enceladus. The mission concept is to perform in situ investigations of two worlds tied together by location and properties, whose remarkable natures have been partly revealed by the ongoing Cassini-Huygens mission. These bodies still hold mysteries requiring a complete exploration using a variety of vehicles and instruments. TandEM is an ambitious mission because its targets are two of the most exciting and challenging bodies in the Solar System. It is designed to build on but exceed the scientific and technological accomplishments of the Cassini-Huygens mission, exploring Titan and Enceladus in ways that are not currently possible (full close-up and in situ coverage over long periods of time). In the current mission architecture, TandEM proposes to deliver two medium-sized spacecraft to the Saturnian system. One spacecraft would be an orbiter with a large host of instruments which would perform several Enceladus flybys and deliver penetrators to its surface before going into a dedicated orbit around Titan alone, while the other spacecraft would carry the Titan in situ investigation components, i.e. a hot-air balloon (MontgolfiSre) and possibly several landing probes to be delivered through the atmosphere.
  •  
2.
  • Jakosky, B. M., et al. (författare)
  • MAVEN observations of the response of Mars to an interplanetary coronal mass ejection
  • 2015
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 350:6261
  • Tidskriftsartikel (refereegranskat)abstract
    • Coupling between the lower and upper atmosphere, combined with loss of gas from the upper atmosphere to space, likely contributed to the thin, cold, dry atmosphere of modern Mars. To help understand ongoing ion loss to space, the Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft made comprehensive measurements of the Mars upper atmosphere, ionosphere, and interactions with the Sun and solar wind during an interplanetary coronal mass ejection impact in March 2015. Responses include changes in the bow shock and magnetosheath, formation of widespread diffuse aurora, and enhancement of pick-up ions. Observations and models both show an enhancement in escape rate of ions to space during the event. Ion loss during solar events early in Mars history may have been a major contributor to the long-term evolution of the Mars atmosphere.
  •  
3.
  • Jakosky, B. M., et al. (författare)
  • The Mars Atmosphere and Volatile Evolution (MAVEN) Mission
  • 2015
  • Ingår i: Space Science Reviews. - : Springer Science and Business Media LLC. - 0038-6308 .- 1572-9672. ; 195:1-4, s. 3-48
  • Forskningsöversikt (refereegranskat)abstract
    • The MAVEN spacecraft launched in November 2013, arrived at Mars in September 2014, and completed commissioning and began its one-Earth-year primary science mission in November 2014. The orbiter's science objectives are to explore the interactions of the Sun and the solar wind with the Mars magnetosphere and upper atmosphere, to determine the structure of the upper atmosphere and ionosphere and the processes controlling it, to determine the escape rates from the upper atmosphere to space at the present epoch, and to measure properties that allow us to extrapolate these escape rates into the past to determine the total loss of atmospheric gas to space through time. These results will allow us to determine the importance of loss to space in changing the Mars climate and atmosphere through time, thereby providing important boundary conditions on the history of the habitability of Mars. The MAVEN spacecraft contains eight science instruments (with nine sensors) that measure the energy and particle input from the Sun into the Mars upper atmosphere, the response of the upper atmosphere to that input, and the resulting escape of gas to space. In addition, it contains an Electra relay that will allow it to relay commands and data between spacecraft on the surface and Earth.
  •  
4.
  • Madanian, H., et al. (författare)
  • Suprathermal electrons near the nucleus of comet 67P/Churyumov-Gerasimenko at 3AU : Model comparisons with Rosetta data
  • 2016
  • Ingår i: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 121:6, s. 5815-5836
  • Tidskriftsartikel (refereegranskat)abstract
    • Observations of the coma near the nucleus of comet 67P/Churyumov-Gerasimenko (67P) made by the IES (Ion and Electron Sensor) instrument onboard the Rosetta Orbiter during late 2014 showed that electron fluxes greatly exceeded solar wind electron fluxes. The IES is part of the Rosetta Plasma Consortium. This paper reports on electron energy spectra measured by IES near the nucleus as well as approximate densities and average energies for the suprathermal electrons when the comet was at a heliocentric distance of about 3 AU. Comparisons are made with electron densities measured by other instruments. The high electron densities observed (e.g., n(e) approximate to 10-100 cm(-3)) must be associated with the cometary ion density enhancement created mainly by the photoionization of cometary gas by solar radiation; there are other processes that also contribute. Quasineutrality requires that the electron and ion densities be the same, and under certain conditions an ambipolar electric field is required to achieve quasi-neutrality. We present the results of a test particle model of cometary ion pickup by the solar wind and a two-stream electron transport code and use these results to interpret the IES data. We also estimate the effects on the electron spectrum of a compression of the electron fluid parcel. The electrons detected by IES can have energies as high as about 100-200 eV near the comet on some occasions, in which case the hot electrons can significantly enhance ionization rates of neutrals via impact ionization.
  •  
5.
  • Ulusen, D., et al. (författare)
  • Comparisons of Cassini flybys of the Titan magnetospheric interaction with an MHD model : Evidence for organized behavior at high altitudes
  • 2012
  • Ingår i: Icarus. - : Elsevier BV. - 0019-1035 .- 1090-2643. ; 217:1, s. 43-54
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent papers suggest the significant variability of conditions in Saturn's magnetosphere at the orbit of Titan. Because of this variability, it was expected that models would generally have a difficult time regularly comparing to data from the Titan flybys. However, we find that in contrast to this expectation, it appears that there is underlying organization of the interaction features roughly above similar to 1800 km (1.7 Rt) altitude by the average external field due to Saturn's dipole moment. In this study, we analyze Cassini's plasma and magnetic field data collected at 9 Titan encounters during which the external field is close to the ideal southward direction and compare these observations to the results from a 2-fluid (1 ion, 1 electron) 7-species MHD model simulations obtained under noon SLT conditions. Our comparative analysis shows that under noon SLT conditions the Titan plasma interaction can be viewed in two layers: an outer layer between 6400 and 1800 km where interaction features observed in the magnetic field are in basic agreement with a purely southward external field interaction and an inner layer below 1800 km where the magnetic field measurements show strong variations and deviate from the model predictions. Thus the basic features inferred from the Voyager 1 flyby seem to be generally present above similar to 1800 km in spite of the ongoing external variations from SLT excursions, time variability and magnetospheric current systems as long as a significant southward external field component is present. At around similar to 1800 km kinetic effects (such as mass loading and heavy ion pickup) and below 1800 km ionospheric effects (such as drag of ionospheric plasma due to coupling with neutral winds and/or magnetic memory of Titan's ionosphere) complicate what is observed.
  •  
6.
  • Cui, J., et al. (författare)
  • Diurnal variations of Titan's ionosphere
  • 2009
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 114:6, s. A06310-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present our analysis of the diurnal variations of Titan's ionosphere (between 1000 and 1300 km) based on a sample of Ion Neutral Mass Spectrometer (INMS) measurements in the Open Source Ion (OSI) mode obtained from eight close encounters of the Cassini spacecraft with Titan. Although there is an overall ion depletion well beyond the terminator, the ion content on Titan's nightside is still appreciable, with a density plateau of similar to 700 cm(-3) below similar to 1300 km. Such a plateau is a combined result of significant depletion of light ions and modest depletion of heavy ones on Titan's nightside. We propose that the distinctions between the diurnal variations of light and heavy ions are associated with their different chemical loss pathways, with the former primarily through "fast'' ion-neutral chemistry and the latter through "slow'' electron dissociative recombination. The strong correlation between the observed night-to-day ion density ratios and the associated ion lifetimes suggests a scenario in which the ions created on Titan's dayside may survive well to the nightside. The observed asymmetry between the dawn and dusk ion density profiles also supports such an interpretation. We construct a time-dependent ion chemistry model to investigate the effect of ion survival associated with solid body rotation alone as well as superrotating horizontal winds. For long-lived ions, the predicted diurnal variations have similar general characteristics to those observed. However, for short-lived ions, the model densities on the nightside are significantly lower than the observed values. This implies that electron precipitation from Saturn's magnetosphere may be an additional and important contributor to the densities of the short-lived ions observed on Titan's nightside.
  •  
7.
  • Edberg, Niklas J. T., et al. (författare)
  • Extreme densities in Titan's ionosphere during the T85 magnetosheath encounter
  • 2013
  • Ingår i: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 40:12, s. 2879-2883
  • Tidskriftsartikel (refereegranskat)abstract
    • We present Cassini Langmuir probe measurements of the highest electron number densities ever reported from the ionosphere of Titan. The measured density reached 4310cm(-3) during the T85 Titan flyby. This is at least 500cm(-3) higher than ever observed before and at least 50% above the average density for similar solar zenith angles. The peak of the ionospheric density is not reached on this flyby, making the maximum measured density a lower limit. During this flyby, we also report that an impacting coronal mass ejection (CME) leaves Titan in the magnetosheath of Saturn, where it is exposed to shocked solar wind plasma for at least 2 h 45 min. We suggest that the solar wind plasma in the magnetosheath during the CME conditions significantly modifies Titan's ionosphere by an addition of particle impact ionization by precipitating protons.
  •  
8.
  • Edberg, Niklas J. T., et al. (författare)
  • Solar cycle modulation of Titan's ionosphere
  • 2013
  • Ingår i: Journal of Geophysical Research-Space Physics. - : American Geophysical Union (AGU). - 2169-9380. ; 118:8, s. 5255-5264
  • Tidskriftsartikel (refereegranskat)abstract
    • During the six Cassini Titan flybys T83-T88 (May 2012 to November 2012) the electron density in the ionospheric peak region, as measured by the radio and plasma wave science instrument/Langmuir probe, has increased significantly, by 15-30%, compared to previous average. These measurements suggest that a longterm change has occurred in the ionosphere of Titan, likely caused by the rise to the new solar maximum with increased EUV fluxes. We compare measurements from TA, TB, and T5, from the declining phase of solar cycle 23 to the recent T83-T88 measurements during cycle 24, since the solar irradiances from those two intervals are comparable. The peak electron densities normalized to a common solar zenith angle N-norm from those two groups of flybys are comparable but increased compared to the solar minimum flybys (T16-T71). The integrated solar irradiance over the wavelengths 1-80nm, i.e., the solar energy flux, F-e, correlates well with the observed ionospheric peak density values. Chapman layer theory predicts that NnormFek, with k=0.5. We find observationally that the exponent k=0.540.18. Hence, the observations are in good agreement with theory despite the fact that many assumptions in Chapman theory are violated. This is also in good agreement with a similar study by Girazian and Withers (2013) on the ionosphere of Mars. We use this power law to estimate the peak electron density at the subsolar point of Titan during solar maximum conditions and find it to be about 6500cm(-3), i.e., 85-160% more than has been measured during the entire Cassini mission.
  •  
9.
  • Hadid, Lina Z, et al. (författare)
  • Ring Shadowing Effects on Saturn's Ionosphere : Implications for Ring Opacity and Plasma Transport
  • 2018
  • Ingår i: Geophysical Research Letters. - : AMER GEOPHYSICAL UNION. - 0094-8276 .- 1944-8007. ; 45:19, s. 10084-10092
  • Tidskriftsartikel (refereegranskat)abstract
    • We present new results obtained by the Radio and Plasma Wave Science Langmuir probe on board Cassini during the Grand Finale. The total direct current sampled by the Langmuir probe at negative bias voltage is used to study the effect of the ring shadows on the structure of the Kronian topside ionosphere. The D and C rings and the Cassini Division are confirmed to be optically thin to extreme ultraviolet solar radiation. However, different responses from the opaque A and B rings are observed. The edges of the A ring shadow are shown to match the A ring boundaries, unlike the B ring, which indicates variable responses to the B ring shadow. We show that the variable responses are due to the ionospheric plasma, more precisely to the longer chemical lifetime of H+ compared to H-2(+) and H-3(+), suggesting that the plasma is transported from the sunlit region to the shadowed one in the ionosphere. Plain Language Summary As Saturn's northern hemisphere experienced summer during the Grand Finale, the planet's northern dayside hemisphere and its rings were fully illuminated by the Sun. However, the southern hemisphere was partly obscured because of the shadows cast by the A and B rings. Using the in situ measurements of the Langmuir probe part of the Radio and Plasma Wave Science investigation on board the Cassini spacecraft, we study for the first time the effect of the ring shadows on Saturn's ionosphere. From the ring shadows signatures on the total ion current collected by the Langmuir probe, we show that the A and B rings are optically thicker (to the solar extreme ultraviolet radiation) than the inner C and D rings and the Cassini Division to the solar extreme ultraviolet radiation. Moreover, we reproduce the boundaries of the A ring and the outer edge of the B ring. Furthermore, observed variations with respect to the inner edge of the B ring imply a delayed response of the ionospheric H+ because of its long lifetime and suggest that the ionospheric plasma is transported from an unshadowed region to a shadowed one in the ionosphere.
  •  
10.
  • Luhmann, J. G., et al. (författare)
  • Investigating magnetospheric interaction effects on Titan's ionosphere with the Cassini orbiter Ion Neutral Mass Spectrometer, Langmuir Probe and magnetometer observations during targeted flybys
  • 2012
  • Ingår i: Icarus. - : Elsevier BV. - 0019-1035 .- 1090-2643. ; 219:2, s. 534-555
  • Tidskriftsartikel (refereegranskat)abstract
    • In the similar to 6 years since the Cassini spacecraft went into orbit around Saturn in 2004, roughly a dozen Titan flybys have occurred for which the Ion Neutral Mass Spectrometer (INMS) measured that moon's ionospheric density and composition. For these, and for the majority of the similar to 60 close flybys probing to altitudes down to similar to 950 km, Langmuir Probe electron densities were also obtained. These were all complemented by Cassini magnetometer observations of the magnetic fields affected by the Titan plasma interaction. Titan's ionosphere was expected to differ from those of other unmagnetized planetary bodies because of significant contributions from particle impact due to its magnetospheric environment. However, previous analyses of these data clearly showed the dominance of the solar photon source, with the possible exception of the nightside. This paper describes the collected ionospheric data obtained in the period between Cassini's Saturn Orbit Insertion in 2004 and 2009, and examines some of their basic characteristics with the goal of searching for magnetospheric influences. These influences might include effects on the altitude profiles of impact ionization by magnetospheric particles at the Titan orbit location, or by locally produced pickup ions freshly created in Titan's upper atmosphere. The effects of forces on the ionosphere associated with both the draped and penetrating external magnetic fields might also be discernable. A number of challenges arise in such investigations given both the observed order of magnitude variations in the magnetospheric particle sources and the unsteadiness of the magnetospheric magnetic field and plasma flows at Titan's (similar to 20Rs (Saturn Radius)) orbit. Transterminator flow of ionospheric plasma from the dayside may also supply some of the nightside ionosphere, complicating determination of the magnetospheric contribution. Moreover, we are limited by the sparse sampling of the ionosphere during the mission as the Titan interaction also depends on Saturn Local Time as well as possible intrinsic asymmetries and variations of Titan's neutral atmosphere. We use organizations of the data by key coordinate systems of the plasma interaction with Titan's ionosphere to help interpret the observations. The present analysis does not find clear characteristics of the magnetosphere's role in defining Titan's ionosphere. The observations confirm the presence of an ionosphere produced mainly by sunlight, and an absence of expected ionospheric field signatures in the data. Further investigation of the latter, in particular, may benefit from numerical experiments on the inner boundary conditions of 3D models including the plasma interaction and features such as neutral winds.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 30

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy