SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Creed Irena F.) "

Sökning: WFRF:(Creed Irena F.)

  • Resultat 1-10 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bansal, Sheel, et al. (författare)
  • Practical Guide to Measuring Wetland Carbon Pools and Fluxes
  • 2023
  • Ingår i: Wetlands (Wilmington, N.C.). - : SPRINGER. - 0277-5212 .- 1943-6246. ; 43:8
  • Forskningsöversikt (refereegranskat)abstract
    • Wetlands cover a small portion of the world, but have disproportionate influence on global carbon (C) sequestration, carbon dioxide and methane emissions, and aquatic C fluxes. However, the underlying biogeochemical processes that affect wetland C pools and fluxes are complex and dynamic, making measurements of wetland C challenging. Over decades of research, many observational, experimental, and analytical approaches have been developed to understand and quantify pools and fluxes of wetland C. Sampling approaches range in their representation of wetland C from short to long timeframes and local to landscape spatial scales. This review summarizes common and cutting-edge methodological approaches for quantifying wetland C pools and fluxes. We first define each of the major C pools and fluxes and provide rationale for their importance to wetland C dynamics. For each approach, we clarify what component of wetland C is measured and its spatial and temporal representativeness and constraints. We describe practical considerations for each approach, such as where and when an approach is typically used, who can conduct the measurements (expertise, training requirements), and how approaches are conducted, including considerations on equipment complexity and costs. Finally, we review key covariates and ancillary measurements that enhance the interpretation of findings and facilitate model development. The protocols that we describe to measure soil, water, vegetation, and gases are also relevant for related disciplines such as ecology. Improved quality and consistency of data collection and reporting across studies will help reduce global uncertainties and develop management strategies to use wetlands as nature-based climate solutions.
  •  
2.
  • Bergström, Ann-Kristin, 1968-, et al. (författare)
  • Biomass, community composition and N:P recycling ratios of zooplankton in northern high-latitude lakes with contrasting levels of N deposition and dissolved organic carbon
  • 2022
  • Ingår i: Freshwater Biology. - : John Wiley & Sons. - 0046-5070 .- 1365-2427. ; 67:9, s. 1508-1520
  • Tidskriftsartikel (refereegranskat)abstract
    • Global changes are causing decreases in inorganic nitrogen (N) concentrations, increases in coloured dissolved organic carbon (DOC) concentrations, and decreases in dissolved inorganic N to total phosphorus ratios (DIN:TP) in northern lakes. The effects of these changes on phytoplankton and zooplankton biomass and the N:P recycling ratio of zooplankton remain unresolved.In 33 Swedish headwater lakes across subarctic-to-boreal gradients with different levels of N deposition (low N in the north [Västerbotten, boreal; Abisko, subarctic] vs. high N in the south [Värmland, boreal; Jämtland, subarctic]), we measured water chemistry, phytoplankton biomass (chlorophyll-a [Chl-a], Chl-a:TP), seston mineral quality (C:P, N:P), as well as zooplankton biomass, community composition, and C:N:P stoichiometry. We estimated nutrient imbalances and the N:P recycling ratios of zooplankton using ecological stoichiometry models.There was a large-scale gradient from low lake DIN and DIN:TP in the north to high DIN and DIN:TP in the south, with lower DIN:TP in lakes coinciding with higher DOC within each region. Lower lake DIN was associated with lower phytoplankton biomass (lower Chl-a:TP). Lower lake DIN:TP was associated with richer seston mineral quality (lower seston C:P and N:P) and higher zooplankton biomass.Zooplankton community composition differed in the north vs. south, with a dominance of N-requiring calanoid copepods with high N:P in the north and P-requiring cladocerans with low N:P in the south. Also, greater differences in zooplankton community composition were found between subarctic regions (with lower DOC) than between boreal regions (with higher DOC), suggesting that increases in lake DOC and associated declines in lake DIN:TP reduce differences in zooplankton community composition.The combination of lower lake DIN, higher lake DOC, and lower lake DIN:TP led to reduced zooplankton N:P recycling ratios, possibly by reducing seston N:P and/or by enhancing calanoid copepod dominance in the zooplankton community.Our findings suggest that the combination of declining N deposition and increasing lake browning in northern high-latitude lakes will reduce phytoplankton biomass, but will concurrently enhance seston mineral quality and probably also zooplankton biomass and their recycling efficiency of P relative to N.
  •  
3.
  • Bergström, Ann-Kristin, 1968-, et al. (författare)
  • Changes in nutritional quality and nutrient limitation regimes of phytoplankton in response to declining N deposition in mountain lakes
  • 2020
  • Ingår i: Aquatic Sciences. - : Springer. - 1015-1621 .- 1420-9055. ; 82:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Phytoplankton play a key role in supporting aquatic food webs. However, the effects of ongoing large-scale changes in the concentrations and stoichiometry of important biological compounds [dissolved inorganic N (DIN), total phosphorus (TP), dissolved organic carbon (DOC) and DIN:TP] on the development and nutritional quality of phytoplankton for higher trophic levels are unclear. We conducted lake studies and in situ bioassay experiments in two Swedish mountain regions [Abisko (north) and Jamtland (south)] with different N deposition and where lakes in each region were distributed along a similar gradient in lake DOC (2-7 mg L-1) to assess whether differences in nutrients, DOC and DIN:TP induced differences in phytoplankton quantity [chlorophyll a (Chl-a) and seston carbon (C)] and quality [seston C:N:P stoichiometry and fatty acid (FA) composition]. Using long-term monitoring data from lakes in these two mountain regions, we found declining long-term trends in N deposition and lake DIN and total TP concentrations, but not in lake DIN:TP. Lakes in Abisko received lower N deposition and had lower DIN:TP than those in Jamtland. Phytoplankton was N- to NP-limited in Abisko lakes but NP dual-limited in Jamtland lakes. The N fertilization effects induced by higher DIN:TP were weak on phytoplankton quantity but strong on phytoplankton quality. The phytoplankton had lower eicosapentaenoic acid (EPA) content and higher P content (lower seston C:P) in Abisko compared to in Jamtland. In addition, the quality of the DOC (as indicated by its aromaticity and SUVA) influenced not only the light conditions and the seston C:P ratios, but also the FA composition. We found higher bacteria FA concentrations in seston in Abisko than in Jamtland, despite lower amounts of FA of terrestrial origin in Abisko. Our findings suggest that declining N deposition and enhanced colored terrestrial C loadings leads to lower nutritional quality of basal resources for higher consumers in mountain lakes.
  •  
4.
  • Bergström, Ann-Kristin, 1968-, et al. (författare)
  • Declining calcium concentration drives shifts toward smaller and less nutritious zooplankton in northern lakes
  • 2024
  • Ingår i: Global Change Biology. - : John Wiley & Sons. - 1354-1013 .- 1365-2486. ; 30:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Zooplankton community composition of northern lakes is changing due to the interactive effects of climate change and recovery from acidification, yet limited data are available to assess these changes combined. Here, we built a database using archives of temperature, water chemistry and zooplankton data from 60 Scandinavian lakes that represent broad spatial and temporal gradients in key parameters: temperature, calcium (Ca), total phosphorus (TP), total organic carbon (TOC), and pH. Using machine learning techniques, we found that Ca was the most important determinant of the relative abundance of all zooplankton groups studied, while pH was second, and TOC third in importance. Further, we found that Ca is declining in almost all lakes, and we detected a critical Ca threshold in lake water of 1.3 mg L−1, below which the relative abundance of zooplankton shifts toward dominance of Holopedium gibberum and small cladocerans at the expense of Daphnia and copepods. Our findings suggest that low Ca concentrations may shape zooplankton communities, and that current trajectories of Ca decline could promote widespread changes in pelagic food webs as zooplankton are important trophic links from phytoplankton to fish and different zooplankton species play different roles in this context.
  •  
5.
  • Isles, Peter D. F., et al. (författare)
  • Does browning affect the identity of limiting nutrients in lakes?
  • 2020
  • Ingår i: Aquatic Sciences. - : Springer Science and Business Media LLC. - 1015-1621 .- 1420-9055. ; 82:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Concentrations of dissolved organic carbon (DOC) have increased recently in many lakes at high latitudes in North America and Europe, but it is unclear what effect this will have on the identity of the limiting nutrient for phytoplankton [nitrogen (N) vs. phosphorus (P)]. Identifying the effect of changing DOC on phytoplankton nutrient limitation is complicated by spatial covariation between atmospheric N deposition and increasing DOC in areas where lake browning occurs. We conducted nutrient-limitation assays in 27 lakes from three sites along gradients of climate and atmospheric N deposition in Sweden. Within each site, lakes were selected to represent the range of DOC concentrations. We also conducted statistical analyses of large-scale lake survey data (n = 4768 lakes divided into 47 regions) to investigate relationships between DOC and nutrient stoichiometry while controlling for differences in N deposition. Our findings confirmed that most lakes were dual-limited by both N and P in the south, whereas northern lakes were primarily N-limited. Throughout Sweden the ratio of dissolved inorganic nitrogen (DIN) to total phosphorus (TP) declined with increasing DOC in most regions, suggesting that browner lakes are more likely to be N limited. These results were not supported by our nutrient limitation assays, which identified no relationship between DOC and relative strength of limitation by N or P. Increased DOC also resulted in significant increases in both total and inorganic N and P fractions, suggesting that other factors such as light limitation or increased top-down control become more important as DOC increases.
  •  
6.
  • Isles, Peter D. F., et al. (författare)
  • Recent Synchronous Declines in DIN:TP in Swedish Lakes
  • 2018
  • Ingår i: Global Biogeochemical Cycles. - : American Geophysical Union (AGU). - 0886-6236 .- 1944-9224. ; 32:2, s. 208-225
  • Tidskriftsartikel (refereegranskat)abstract
    • Declining atmospheric nitrogen (N) deposition in northern Europe and parts of North America, coupled with ongoing changes in climate, has the potential to alter the nutrient limitation status of freshwater ecosystems. In this study we compared time series data of atmospheric N deposition, air temperature, and precipitation with corresponding estimates of dissolved inorganic nitrogen (DIN), total phosphorus (TP), DIN: TP, and total organic carbon from 78 headwater streams and 95 nutrient-poor lakes in Sweden from 1998 to 2013 to assess trends in, and potential drivers of, lake N:P ratios. We found that trends in nutrients were variable at the scale of individual lakes but were highly synchronous at the regional scale, suggesting underlying control by broad-scale environmental drivers mediated by site-specific characteristics. Widespread declines in lake DIN throughout Sweden were correlated with declines in atmospheric N deposition, particularly in northern areas. TP did not have strong directional trends, but interannual variability was synchronous at regional scales, implying that broad-scale climate drivers were affecting these trends. Overall, we observed a significant decline in DIN:TP throughout Sweden over the monitoring period. At the beginning of the study period, 32% of lakes were N limited and 45% colimited by N and P. Proportions increased to 63% of lakes N limited and 20% colimited by N and P at the end of the study period. These results suggest that N limitation is likely to become more widespread in subarctic and boreal areas of Europe in the future if recent trends continue. Plain Language Summary This article examines the way in which changes in the amount of nitrogen from the atmosphere being delivered to lakes (as a result of fossil fuel combustion) are interacting with global climate change to affect nutrient availability in Swedish lakes. Nitrogen can act as fertilizer in lakes, supporting increased growth of algae and aquatic plants. The amount of nitrogen relative to other important elements such as phosphorus can help to determine which groups of plants and algae dominate lake ecosystems, as well as how much living biomass lakes can sustain. We find that declines in atmospheric deposition of nitrogen, which have resulted from the adoption of policies controlling emissions from fossil fuel combustion, have caused declines in nitrogen concentrations in lakes throughout Sweden. This has changed the balance of nitrogen and phosphorus, which may result in changes to the structure of lake biological communities. At the same time, variability in climate also has subtle but widespread affects on lake nutrient concentrations, suggesting that the availability of nutrients in lakes at northern latitudes is likely to change in the future as the climate warms.
  •  
7.
  • Isles, Peter D. F., et al. (författare)
  • Trade-offs Between Light and Nutrient Availability Across Gradients of Dissolved Organic Carbon Lead to Spatially and Temporally Variable Responses of Lake Phytoplankton Biomass to Browning
  • 2021
  • Ingår i: Ecosystems (New York. Print). - : Springer. - 1432-9840 .- 1435-0629. ; 24:8, s. 1837-1852
  • Tidskriftsartikel (refereegranskat)abstract
    • Northern lakes are experiencing widespread increases in dissolved organic carbon (DOC) that are likely to lead to changes in pelagic phytoplankton biomass. Pelagic phytoplankton biomass responds to trade-offs between light and nutrient availability. However, the influence of DOC light absorbing properties and carbon–nutrient stoichiometry on phytoplankton biomass across seasonal or spatial gradients has not been assessed. Here, we analyzed data from almost 5000 lakes to examine how the carbon–phytoplankton biomass relationship is influenced by seasonal changes in light availability, DOC light absorbing properties (carbon-specific visual absorbance, SVA420), and DOC–nutrient [total nitrogen (TN) and total phosphorus (TP)] stoichiometry, using TOC as a proxy for DOC. We found evidence for trade-offs between light and nutrient availability in the relationship between DOC and phytoplankton biomass [chlorophyll (chl)-a], with the shape of the relationship varying with season. A clear unimodal relationship was found only in the fall, particularly in the subsets of lakes with the highest TOC:TP. Observed trends of increasing TOC:TP and decreasing TOC:TN suggest that the effects of future browning will be contingent on future changes in carbon–nutrient stoichiometry. If browning continues, phytoplankton biomass will likely increase in most northern lakes, with increases of up to 76% for a 1.7 mg L−1 increase in DOC expected in subarctic regions, where DOC, SVA420, DOC:TN, and DOC:TP are all low. In boreal regions with higher DOC and higher SVA420, and thus lower light availability, lakes may experience only moderate increases or even decreases in phytoplankton biomass with future browning.
  •  
8.
  • Isles, Peter D. F., et al. (författare)
  • Widespread synchrony in phosphorus concentrations in northern lakes linked to winter temperature and summer precipitation
  • 2023
  • Ingår i: Limnology and Oceanography Letters. - : John Wiley & Sons. - 2378-2242. ; 8:4, s. 639-648
  • Tidskriftsartikel (refereegranskat)abstract
    • In recent years, unexplained declines in lake total phosphorus (TP) concentrations have been observed at northern latitudes (> 42°N latitude) where most of the world's lakes are found. We compiled data from 389 lakes in Fennoscandia and eastern North America to investigate the effects of climate on lake TP concentrations. Synchrony in year-to-year variability is an indicator of climatic influences on lake TP, because other major influences on nutrients (e.g., land use change) are not likely to affect all lakes in the same year. We identified significant synchrony in lake TP both within and among different geographic regions. Using a bootstrapped random forest analysis, we identified winter temperature as the most important factor controlling annual TP, followed by summer precipitation. In Fennoscandia, TP was negatively correlated with the winter East Atlantic Pattern, which is associated with regionally warmer winters. Our results suggest that, in the absence of other overriding factors, lake TP and productivity may decline with continued winter warming in northern lakes.
  •  
9.
  • Lau, Danny C. P., et al. (författare)
  • Lowered nutritional quality of plankton caused by global environmental changes
  • 2021
  • Ingår i: Global Change Biology. - : John Wiley & Sons. - 1354-1013 .- 1365-2486. ; 27:23, s. 6294-6306
  • Tidskriftsartikel (refereegranskat)abstract
    • Global environmental changes are causing widespread nutrient depletion, declines in the ratio of dissolved inorganic nitrogen (N) to total phosphorus (DIN:TP), and increases in both water temperature and terrestrial colored dissolved organic carbon (DOC) concentration (browning) in high-latitude northern lakes. Declining lake DIN:TP, warming, and browning alter the nutrient limitation regime and biomass of phytoplankton, but how these stressors together affect the nutritional quality in terms of polyunsaturated fatty acid (PUFA) contents of the pelagic food web components remains unknown. We assessed the fatty acid compositions of seston and zooplankton in 33 lakes across south-to-north and boreal-to-subarctic gradients in Sweden. Data showed higher lake DIN:TP in the south than in the north, and that boreal lakes were warmer and browner than subarctic lakes. Lake DIN:TP strongly affected the PUFA contents—especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)—in seston, calanoids, and copepods (as a group), but not in cladocerans. The EPA+DHA contents increased by 123% in seston, 197% in calanoids, and 230% in copepods across a lake molar DIN:TP gradient from 0.17 to 14.53, indicating lower seston and copepod nutritional quality in the more N-limited lakes (those with lower DIN:TP). Water temperature affected EPA+DHA contents of zooplankton, especially cladocerans, but not seston. Cladoceran EPA+DHA contents were reduced by ca. 6% for every 1°C increase in surface water. Also, the EPA, DHA, or EPA+DHA contents of Bosmina, cyclopoids, and copepods increased in lakes with higher DOC concentrations or aromaticity. Our findings indicate that zooplankton food quality for higher consumers will decrease with warming alone (for cladocerans) or in combination with declining lake DIN:TP (for copepods), but impacts of these stressors are moderated by lake browning. Global environmental changes that drive northern lakes toward more N-limited, warmer, and browner conditions will reduce PUFA availability and nutritional quality of the pelagic food web components.
  •  
10.
  • Palstev, Aleksey, et al. (författare)
  • Phytoplankton biomass in northern lakes reveals a complex response to global change
  • 2024
  • Ingår i: Science of the Total Environment. - : Elsevier. - 0048-9697 .- 1879-1026. ; 940
  • Tidskriftsartikel (refereegranskat)abstract
    • Global change may introduce fundamental alterations in phytoplankton biomass and community structure that can alter the productivity of northern lakes. In this study, we utilized Swedish and Finnish monitoring data from lakes that are spatially (135 lakes) and temporally (1995-2019, 110 lakes) extensive to assess how phytoplankton biomass (PB) of dominant phytoplankton groups related to changes in water temperature, pH and key nutrients [total phosphorus (TP), total nitrogen (TN), total organic carbon (TOC), iron (Fe)] along spatial (Fennoscandia) and temporal (25 years) gradients. Using a machine learning approach, we found that TP was the most important determinant of total PB and biomass of a specific species of Raphidophyceae - Gonyostomum semen - and Cyanobacteria (both typically with adverse impacts on food-webs and water quality) in spatial analyses, while Fe and pH were second in importance for G. semen and TN and pH were second and third in importance for Cyanobacteria. However, in temporal analyses, decreasing Fe and increasing pH and TOC were associated with a decrease in G. semen and an increase in Cyanobacteria. In addition, in many lakes increasing TOC seemed to have generated browning to an extent that significantly reduced PB. The identified discrepancy between the spatial and temporal results suggests that substitutions of data for space-for-time may not be adequate to characterize long-term effects of global change on phytoplankton. Further, we found that total PB exhibited contrasting temporal trends (increasing in northern- and decreasing in southern Fennoscandia), with the decline in total PB being more pronounced than the increase. Among phytoplankton, G. semen biomass showed the strongest decline, while cyanobacterial biomass showed the strongest increase over 25 years. Our findings suggest that progressing browning and changes in Fe and pH promote significant temporal changes in PB and shifts in phytoplankton community structures in northern lakes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 17
Typ av publikation
tidskriftsartikel (14)
forskningsöversikt (3)
Typ av innehåll
refereegranskat (17)
Författare/redaktör
Creed, Irena F. (17)
Kortelainen, Pirkko (4)
Vrede, Tobias (3)
Hessen, Dag O. (2)
Drakare, Stina (2)
Jarsjö, Jerker (2)
visa fler...
Destouni, Georgia (2)
Vuorio, Kristiina (2)
Wickland, Kimberly P ... (1)
Bishop, Kevin (1)
DelSontro, Tonya (1)
Andersson, Agneta (1)
Rusak, James A. (1)
Weyhenmeyer, Gesa A. (1)
Bastviken, David (1)
Kritzberg, Emma (1)
Kalantari, Zahra (1)
Jaramillo, Fernando (1)
Berggren, Martin (1)
Bergström, Ann-krist ... (1)
Lyon, Steve W. (1)
Manzoni, Stefano (1)
Giesler, Reiner (1)
McDonnell, Jeffrey J ... (1)
Cooke, Steven J. (1)
Ameli, Ali A. (1)
Beven, Keith (1)
Erlandsson, Martin (1)
Muys, Bart (1)
Ilstedt, Ulrik (1)
Grimm, Nancy B. (1)
Berg, Peter (1)
Teuling, Adriaan J. (1)
Cherif, Mehdi (1)
Ask, Jenny, 1976- (1)
Arias-Ortiz, Ariane (1)
Wallin, Marcus (1)
McKnight, Diane M. (1)
Pomati, Francesco (1)
Rocha, Juan, 1984- (1)
Quin, Andrew (1)
Bansal, Sheel (1)
Tangen, Brian A. (1)
Bridgham, Scott D. (1)
Desai, Ankur R. (1)
Krauss, Ken W. (1)
Neubauer, Scott C. (1)
Noe, Gregory B. (1)
Rosenberry, Donald O ... (1)
Trettin, Carl (1)
visa färre...
Lärosäte
Umeå universitet (11)
Sveriges Lantbruksuniversitet (7)
Uppsala universitet (4)
Stockholms universitet (4)
Kungliga Tekniska Högskolan (1)
Linköpings universitet (1)
visa fler...
Lunds universitet (1)
visa färre...
Språk
Engelska (17)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (17)
Lantbruksvetenskap (3)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy