SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Crida A.) "

Sökning: WFRF:(Crida A.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Morbidelli, A., et al. (författare)
  • Fossilized condensation lines in the Solar System protoplanetary disk
  • 2016
  • Ingår i: Icarus. - : Elsevier BV. - 0019-1035. ; 267, s. 368-376
  • Tidskriftsartikel (refereegranskat)abstract
    • The terrestrial planets and the asteroids dominant in the inner asteroid belt are water poor. However, in the protoplanetary disk the temperature should have decreased below water-condensation level well before the disk was photo-evaporated. Thus, the global water depletion of the inner Solar System is puzzling. We show that, even if the inner disk becomes cold, there cannot be direct condensation of water. This is because the snowline moves towards the Sun more slowly than the gas itself. Thus the gas in the vicinity of the snowline always comes from farther out, where it should have already condensed, and therefore it should be dry. The appearance of ice in a range of heliocentric distances swept by the snowline can only be due to the radial drift of icy particles from the outer disk. However, if a planet with a mass larger than 20 Earth mass is present, the radial drift of particles is interrupted, because such a planet gives the disk a super-Keplerian rotation just outside of its own orbit. From this result, we propose that the precursor of Jupiter achieved this threshold mass when the snowline was still around 3 AU. This effectively fossilized the snowline at that location. In fact, even if it cooled later, the disk inside of Jupiter's orbit remained ice-depleted because the flow of icy particles from the outer system was intercepted by the planet. This scenario predicts that planetary systems without giant planets should be much more rich in water in their inner regions than our system. We also show that the inner edge of the planetesimal disk at 0.7 AU, required in terrestrial planet formation models to explain the small mass of Mercury and the absence of planets inside of its orbit, could be due to the silicate condensation line, fossilized at the end of the phase of streaming instability that generated the planetesimal seeds. Thus, when the disk cooled, silicate particles started to drift inwards of 0.7. AU without being sublimated, but they could not be accreted by any pre-existing planetesimals.
  •  
2.
  • Lambrechts, M., et al. (författare)
  • Quasi-static contraction during runaway gas accretion onto giant planets
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 630
  • Tidskriftsartikel (refereegranskat)abstract
    • Gas-giant planets, like Jupiter and Saturn, acquire massive gaseous envelopes during the approximately 3 Myr-long lifetimes of protoplanetary discs. In the core accretion scenario, the formation of a solid core of around ten Earth masses triggers a phase of rapid gas accretion. Previous 3D grid-based hydrodynamical simulations found that runaway gas accretion rates correspond to approximately 10 to 100 Jupiter masses per Myr. Such high accretion rates would result in all planets with larger than ten Earth-mass cores to form Jupiter-like planets, which is in clear contrast to the ice giants in the Solar System and the observed exoplanet population. In this work, we used 3D hydrodynamical simulations, that include radiative transfer, to model the growth of the envelope on planets with different masses. We find that gas flows rapidly through the outer part of the envelope, but this flow does not drive accretion. Instead, gas accretion is the result of quasi-static contraction of the inner envelope, which can be orders of magnitude smaller than the mass flow through the outer atmosphere. For planets smaller than Saturn, we measured moderate gas accretion rates that are below one Jupiter mass per Myr. Higher mass planets, however, accrete up to ten times faster and do not reveal a self-driven mechanism that can halt gas accretion. Therefore, the reason for the final masses of Saturn and Jupiter remains difficult to understand, unless their completion coincided with the dissipation of the solar nebula.
  •  
3.
  • Lega, E., et al. (författare)
  • Outwards migration for planets in stellar irradiated 3D discs
  • 2015
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 1365-2966 .- 0035-8711. ; 452:2, s. 1717-1726
  • Tidskriftsartikel (refereegranskat)abstract
    • For the very first time we present 3D simulations of planets embedded in stellar irradiated discs. It is well known that thermal effects could reverse the direction of planetary migration from inwards to outwards, potentially saving planets in the inner, optically thick parts of the protoplanetary disc. When considering stellar irradiation in addition to viscous friction as a source of heating, the outer disc changes from a shadowed to a flared structure. Using a suited analytical formula it has been shown that in the flared part of the disc the migration is inwards; planets can migrate outwards only in shadowed regions of the disc, because the radial gradient of entropy is stronger there. In order to confirm this result numerically, we have computed the total torque acting on planets held on fixed orbits embedded in stellar irradiated 3D discs using the hydrodynamical code FARGOCA. We find qualitatively good agreement between the total torque obtained with numerical simulations and the one predicted by the analytical formula. For large masses (>20 M-circle plus) we find quantitative agreement, and we obtain outwards migration regions for planets up to 60 M-circle plus in the early stages of accretional discs. We find nevertheless that the agreement with the analytic formula is quite fortuitous because the formula underestimates the size of the horseshoe region; this error is compensated by imperfect estimates of other terms, most likely the cooling rate and the saturation.
  •  
4.
  • Crida, A., et al. (författare)
  • Runaway gas accretion and gap opening versus type I migration
  • 2017
  • Ingår i: Icarus. - : Elsevier BV. - 0019-1035. ; 285, s. 145-154
  • Tidskriftsartikel (refereegranskat)abstract
    • Growing planets interact with their natal protoplanetary disc, which exerts a torque onto them allowing them to migrate in the disc. Small mass planets do not affect the gas profile and migrate in the fast type-I migration. Although type-I migration can be directed outwards for planets smaller than 20−30M⊕ in some regions of the disc, planets above this mass should be lost into the central star long before the disc disperses. Massive planets push away material from their orbit and open a gap. They subsequently migrate in the slower, type II migration, which could save them from migrating all the way to the star. Hence, growing giant planets can be saved if and only if they can reach the gap opening mass, because this extends their migration timescale, allowing them to eventually survive at large orbits until the disc itself disperses. However, most of the previous studies only measured the torques on planets with fixed masses and orbits to determine the migration rate. Additionally, the transition between type-I and type-II migration itself is not well studied, especially when taking the growth mechanism of rapid gas accretion from the surrounding disc into account. Here we use isothermal 2D disc simulations with FARGO-2D1D to study the migration behaviour of gas accreting protoplanets in discs. We find that migrating giant planets always open gaps in the disc. We further show analytically and numerically that in the runaway gas accretion regime, the growth time-scale is comparable to the type-I migration time-scale, indicating that growing planets will reach gap opening masses before migrating all the way to the central star in type-I migration if the disc is not extremely viscous and/or thick. An accretion rate limited to the radial gas flow in the disc, in contrast, is not fast enough. When gas accretion by the planet is taken into account, the gap opening process is accelerated because the planet accretes material originating from its horseshoe region. This allows an accreting planet to transition to type-II migration before being lost even if gas fails to be provided for a rapid enough growth and the classical gap opening mass is not reached.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4
Typ av publikation
tidskriftsartikel (4)
Typ av innehåll
refereegranskat (4)
Författare/redaktör
Crida, A. (4)
Morbidelli, A. (3)
Lega, E. (3)
Lambrechts, M (2)
Bitsch, B. (2)
Jacobson, S (1)
visa fler...
Guillot, T (1)
Szulágyi, J. (1)
Johansen, A. (1)
Bitsch, Bertram (1)
Nelson, R. P. (1)
Gounelle, M. (1)
visa färre...
Lärosäte
Lunds universitet (4)
Språk
Engelska (4)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (4)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy