SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Crispin Reverant) "

Sökning: WFRF:(Crispin Reverant)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ding, Penghui, 1994- (författare)
  • Organic Materials-based Electrochemical Flow Cells for Energy Applications
  • 2024
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • To meet the 2015 Paris Agreement requirement of limiting global warming to 1.5 °C, the transition from fossil fuels to renewables (solar and wind) necessitates a rapid change of the energy landscape. The decline of the price for electricity from solar panels and wind turbines is so fast over the last decade that green electricity competes economically with electricity generated from coal, oil, and gas. Considering the output from renewable energy sources is electric current, the conversion and storage of green electricity is the key to the paradigm shift. Both conversion and storage imply transformation of electrical energy into chemical energy of molecules. The former means production of multipurpose energetic molecules. Here such a molecule is hydrogen peroxide, a green oxidant, and our aim is to advance its electrochemical production. The latter is concerned with making the chemical energy readily transformable back into electricity in batteries. In electrochemistry, H-cells are usually used in screening materials and mechanistic understanding of relevant processes. However, the results of H-cell studies sometimes do not directly translate to upscaled systems, such as flow cells. Electrochemical flow cells are attracting attention due to the ability to decouple capacity and power, the long operation time, and the decreased diffusion layer thickness and ohmic resistance. Most flow cells today use inorganic materials, and they are expensive and based on unsustainable mining processes in some geographically concentrated regions. Organic materials, on the contrary, are cheap and readily designed via molecular engineering and electro-organic synthesis. In this thesis, organic materials-based flow cells will be constructed for energy conversion and storage studies.   We start with making free-standing poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) films with a thickness >50 μm by vacuum filtration, which then are used in electrochemical production of hydrogen peroxide (H2O2) in a H-cell. Due to some drawbacks listed above, we shifted our focus to flow cells. The cathodic generation of H2O2 is combined with oxygen evolution reaction (OER) using nickel (II) oxide (NiO) to explore the possibility of using a polymer material in a flow cell environment. This flow cell system could reach a faradaic efficiency of 80% and the system loss is analyzed from different angles. However, the OER is kinetically sluggish and would need precious catalysts to drive the reaction. Instead of turning to precious catalysts, we proposed to replace the OER in the device with the oxidation of a water-soluble organic molecule oxidation, 4,5-dihydroxy-1,3-benzenedisulfonic acid disodium salt monohydrate (tiron/BQDS). The tiron oxidation is fast and does not need a catalyst. The tiron transport phenomena are investigated and we find that migration—a less recognized player—has a big role in regulating tiron transport. The last part of the thesis introduces a biomass-based membrane made from cellulose for a tiron-based aqueous organic redox flow battery. The environmentally friendly nanocellulose membranes display reduced crossover of quinone redox couples, higher discharge capacity, and better reusability than the commercial fluoropolymer Nafion™ 115 membranes.   We hope the present thesis, which deals with various aspects of flow cells from organic material design to system transport phenomena, will stimulate more people to work on this fascinating topic, paving the way for electrification of everything by tunable and sustainable organic molecules. 
  •  
2.
  • Dongo, Patrice D., et al. (författare)
  • Detection of Ice Formation With the Polymeric Mixed Ionic-Electronic Conductor PEDOT: PSS for Aeronautics
  • 2023
  • Ingår i: Advanced Electronic Materials. - : WILEY. - 2199-160X.
  • Tidskriftsartikel (refereegranskat)abstract
    • Ice formation detection is important in telecommunications and aeronautics, e.g., ice on the wings of an aircraft affects its aerodynamic performance and leads to fatal accidents. While many types of sensors exist, resistive sensors for ice detection have been poorly explored. They are however attractive because of their simplicity and the possibility to install an array of sensors on large areas to map the ice formation on wings. Hygroscopic ionic conductors have been demonstrated for resistive ice sensing but their high resistance prevents the readout of sensor arrays. In this work, mixed ionic-electronic polymer conductors (MIEC) are considered for the first time for ice detection. The polymer blend poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) is solution deposited on a pair of electrodes. The sensor displays an abrupt rise in electrical resistance during the transition phase between water liquid to solid. It is proposed that the morphology and electronic transport in PEDOT are affected by the freezing event because the absorbed water in the PSS-rich phase undergoes dilatation upon forming ice crystals. For the aeronautics application, successful tests of integration of sensing layer in pre-preg layers of aeronautical grade and freezing detection are carried out to validate the ice detection principle.
  •  
3.
  • Kuang, Chaoyang, et al. (författare)
  • Switchable Broadband Terahertz Absorbers Based on Conducting Polymer-Cellulose Aerogels
  • 2023
  • Ingår i: Advanced Science. - : WILEY. - 2198-3844.
  • Tidskriftsartikel (refereegranskat)abstract
    • Terahertz (THz) technologies provide opportunities ranging from calibration targets for satellites and telescopes to communication devices and biomedical imaging systems. A main component will be broadband THz absorbers with switchability. However, optically switchable materials in THz are scarce and their modulation is mostly available at narrow bandwidths. Realizing materials with large and broadband modulation in absorption or transmission forms a critical challenge. This study demonstrates that conducting polymer-cellulose aerogels can provide modulation of broadband THz light with large modulation range from ≈ 13% to 91% absolute transmission, while maintaining specular reflection loss < −30 dB. The exceptional THz modulation is associated with the anomalous optical conductivity peak of conducting polymers, which enhances the absorption in its oxidized state. The study also demonstrates the possibility to reduce the surface hydrophilicity by simple chemical modifications, and shows that broadband absorption of the aerogels at optical frequencies enables de-frosting by solar-induced heating. These low-cost, aqueous solution-processable, sustainable, and bio-friendly aerogels may find use in next-generation intelligent THz devices.
  •  
4.
  • Kumar, Divyaratan, et al. (författare)
  • Water-in-Polymer Salt Electrolyte for Long-Life Rechargeable Aqueous Zinc-Lignin Battery
  • 2024
  • Ingår i: Energy and Environmental Materials. - : WILEY. - 2575-0356 .- 2575-0348. ; In Press
  • Tidskriftsartikel (refereegranskat)abstract
    • Zinc metal batteries (ZnBs) are poised as the next-generation energy storage solution, complementing lithium-ion batteries, thanks to their cost-effectiveness and safety advantages. These benefits originate from the abundance of zinc and its compatibility with non-flammable aqueous electrolytes. However, the inherent instability of zinc in aqueous environments, manifested through hydrogen evolution reactions (HER) and dendritic growth, has hindered commercialization due to poor cycling stability. Enter potassium polyacrylate (PAAK)-based water-in-polymer salt electrolyte (WiPSE), a novel variant of water-in-salt electrolytes (WiSE), designed to mitigate side reactions associated with water redox processes, thereby enhancing the cyclic stability of ZnBs. In this study, WiPSE was employed in ZnBs featuring lignin and carbon composites as cathode materials. Our research highlights the crucial function of acrylate groups from WiPSE in stabilizing the ionic flux on the surface of the Zn electrode. This stabilization promotes the parallel deposition of Zn along the (002) plane, resulting in a significant reduction in dendritic growth. Notably, our sustainable Zn-lignin battery showcases remarkable cyclic stability, retaining 80% of its initial capacity after 8000 cycles at a high current rate (1 A g−1) and maintaining over 75% capacity retention up to 2000 cycles at a low current rate (0.2 A g−1). This study showcases the practical application of WiPSE for the development of low-cost, dendrite-free, and scalable ZnBs.
  •  
5.
  • Kumar, Divyaratan, et al. (författare)
  • Water-in-Polymer Salt Electrolyte for Long-Life Rechargeable Aqueous Zinc-Lignin Battery
  • 2024
  • Ingår i: Energy & Environmental Materials. - : John Wiley & Sons. - 2575-0356 .- 2575-0348.
  • Tidskriftsartikel (refereegranskat)abstract
    • Zinc metal batteries (ZnBs) are poised as the next-generation energy storage solution, complementing lithium-ion batteries, thanks to their cost-effectiveness and safety advantages. These benefits originate from the abundance of zinc and its compatibility with non-flammable aqueous electrolytes. However, the inherent instability of zinc in aqueous environments, manifested through hydrogen evolution reactions (HER) and dendritic growth, has hindered commercialization due to poor cycling stability. Enter potassium polyacrylate (PAAK)-based water-in-polymer salt electrolyte (WiPSE), a novel variant of water-in-salt electrolytes (WiSE), designed to mitigate side reactions associated with water redox processes, thereby enhancing the cyclic stability of ZnBs. In this study, WiPSE was employed in ZnBs featuring lignin and carbon composites as cathode materials. Our research highlights the crucial function of acrylate groups from WiPSE in stabilizing the ionic flux on the surface of the Zn electrode. This stabilization promotes the parallel deposition of Zn along the (002) plane, resulting in a significant reduction in dendritic growth. Notably, our sustainable Zn-lignin battery showcases remarkable cyclic stability, retaining 80% of its initial capacity after 8000 cycles at a high current rate (1 A g-1) and maintaining over 75% capacity retention up to 2000 cycles at a low current rate (0.2 A g-1). This study showcases the practical application of WiPSE for the development of low-cost, dendrite-free, and scalable ZnBs. A dendrite-free and long-life cycle Zn-lignin battery was demonstrated using water-in-polymer salt electrolyte. 
  •  
6.
  • Lander, Sanna, et al. (författare)
  • Controlling the rate of posolyte degradation in all-quinone aqueous organic redox flow batteries by sulfonated nanocellulose based membranes: The role of crossover and Michael addition
  • 2024
  • Ingår i: Journal of Energy Storage. - : Elsevier BV. - 2352-152X .- 2352-1538. ; 83
  • Tidskriftsartikel (refereegranskat)abstract
    • Aqueous organic redox flow battery (AORFB) is a technological route towards the large-scale sustainable energy storage. However, several factors need to be controlled to maintain the AORFB performance. Prevention of posolyte and negolyte cross-contamination in asymmetric AORFBs, one of the main causes of capacity decay, relies on their membranes' ability to prevent migration of the redox-active species between the two electrolytes. The barrier properties are often traded for a reduction in ionic conductivity which is crucial to enable the device operation. Another factor greatly affecting quinone-based AORFBs is the Michael addition reaction (MAR) on the charged posolyte, quinone, which has been identified as a major reason for all-quinone AORFBs performance deterioration. Herein, we investigate deterioration scenarios of an all-quinone AORFB using both experimental and computational methods. The study includes a series of membranes based on sulfonated cellulose nanofibrils and different membrane modifications. The layer-by-layer (LbL) surface modifications, i.e. the incorporation of inorganic materials and the reduction of the pore size of the sulfonated cellulose membranes, were all viable routes to reduce the passive diffusion permeability of membranes which correlated to an increased cycling stability of the battery. The kinetics of MAR on quinone was detected using NMR and its impact on the performance fading was modeled computationally. The localization of MAR close to the membrane, which can be assigned to the surface reactivity, affects the diffusion of MAR reagent and the deterioration dynamics of the present all-quinone AORFB.
  •  
7.
  • Saadattalab, Vahid, 1991- (författare)
  • From blue hydrochars to activated carbons : Hydrothermal carbonization, chemical activation and gas adsorption
  • 2024
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Hydrothermal carbonization (HTC) of carbohydrates and biomass is a straightforward method for preparing hydrochars at low temperatures of 180-250 °C. Hydrochars are more carbonized than their precursors. Increasing the carbonization degree of hydrochars at hydrothermal temperatures is a scientific quest that is addressed in this thesis. Hydrochars are known to have a spherical or irregular morphology. Here we address thin film hydrochars for the first time.  Hydrochars themselves are carbon precursors for preparing activated carbons. Activated carbons are porous materials that can be used for gas adsorption applications. In this thesis, enhanced adsorption of VOCs at low pressures is addressed by using iron phosphate impregnated activated carbons. Finaly, any chemical process or product including those in this thesis such as HTC, activation, hydrochar and activated carbons may contribute to the issue of environmental degradation positively or negatively. Such environmental impacts are addressed by life cycle assessment of processes of HTC and activation and their related products in the last paper of this thesis. Briefly mentioned, in my first study (Paper I), I focused on the HTC of glucose in the presence of iron (II) sulfate. By changing the concentration of iron (II) sulfate, with a catalytic amount, blue hydrochars were formed at the bottom of the autoclave. The blueness was related to thin film interference. The thin film hydrochars were more carbonized than spherical hydrochars and the yield of HTC has increased in the presence of iron (II) sulfate. The second study (Paper II) is focused on the activation of hydrochars with H3PO4 and H3PO4+FeCl3. We showed that ultramicroporosity and impregnated iron phosphate species enhance the adsorption of VOCs at low pressure. The ACs were impregnated with Fe (PO3)2 and it was shown that Fe (PO3)2 acts as an activation agent which opens up for future studies. In the third study (Paper III), H3PO4-activated carbons were prepared and modified with FeS and FeSe and it was shown that the ACs were also impregnated with Fe2P, in the case of AC-FeS/Fe2P. FeSe and FeS were not detected by XRD. Only large crystals of Fe2P were detected in the sample AC-FeS/Fe2P. In the last study (Paper IV), prickly pear seed biomass from the agro sector in Tunisia was hydrothermally carbonized. The hydrochars were then activated into ACs by CO2 activation. The life cycle assessment of the HTC and activation process was investigated.  
  •  
8.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8
Typ av publikation
tidskriftsartikel (5)
doktorsavhandling (2)
annan publikation (1)
Typ av innehåll
refereegranskat (5)
övrigt vetenskapligt/konstnärligt (3)
Författare/redaktör
Crispin, Reverant (6)
Gueskine, Viktor (3)
Khan, Ziyauddin (3)
Gladisch, Johannes (2)
Martinelli, Anna, 19 ... (2)
Franco, Leandro R. (2)
visa fler...
Shu, Rui (2)
Kumar, Divyaratan (2)
Fahlman, Mats (1)
Fabiano, Simone (1)
Berggren, Magnus (1)
Engquist, Isak (1)
Zozoulenko, Igor (1)
Abrahamsson, Tobias (1)
Vagin, Mikhail (1)
Zhao, Dan (1)
Ding, Penghui (1)
Jafari, Mohammad Jav ... (1)
Ederth, Thomas (1)
Wågberg, Lars, 1956- (1)
Stoeckel, Marc-Antoi ... (1)
Wang, Suhao (1)
Stanishev, Vallery (1)
Jonsson, Magnus (1)
Araújo, C. Moysés (1)
Kuang, Chaoyang (1)
Darakchieva, Vanya (1)
Chen, Shangzhi (1)
Erlandsson, Johan (1)
Zhang, Qilun (1)
Farina, Dario (1)
Hedin, Niklas, Profe ... (1)
Araujo, Moyses, 1975 ... (1)
Sun, Xiao (1)
Ding, Penghui, 1994- (1)
Crispin, Reverant, P ... (1)
Gueskine, Viktor, Pr ... (1)
Vagin, Mikhail, Prin ... (1)
Seger, Brian, Profes ... (1)
Dongo, Patrice D. (1)
Håkansson, Anna (1)
Pavlopolou, Eleni (1)
Queeckers, Patrick (1)
Iorio, Carlo Saverio (1)
Sipponen, Mika H., 1 ... (1)
Han, Shaobo (1)
Wang, Qingqing (1)
Morsali, Mohammad, 1 ... (1)
Mehandzhiyski, Alexa ... (1)
Luo, Min (1)
visa färre...
Lärosäte
Linköpings universitet (6)
Stockholms universitet (2)
Chalmers tekniska högskola (2)
Kungliga Tekniska Högskolan (1)
Lunds universitet (1)
Karlstads universitet (1)
Språk
Engelska (8)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (6)
Teknik (6)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy