SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Cristobo Javier) "

Sökning: WFRF:(Cristobo Javier)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Rios, Pilar, et al. (författare)
  • Aviles Canyon System : Increasing the benthic biodiversity knowledge
  • 2022
  • Ingår i: Estuarine, Coastal and Shelf Science. - : Elsevier. - 0272-7714 .- 1096-0015. ; 274
  • Tidskriftsartikel (refereegranskat)abstract
    • Macro and megafauna were studied in the Avile acute accent s Canyon System (ACS), southern Bay of Biscay (Cantabrian Sea), during several oceanographic cruises carried out from 2009 to 2017. The biodiversity of ACS is summarized and its description is herein updated after sampling surveys of several programmes (ECOMARG, INDEMARES, SponGES, INTEMARES) conducted by the Spanish Institute of Oceanography (IEO).This study has updated previous knowledge in the canyon area from past national and international projects, their reports and publications as well as data collected in the context of regional projects designed to gain new insight into the diversity of marine invertebrates and fishes from the ACS. Samples were taken using a range of sampling gears (Rock dredge, Beam trawl, Trawl gear GOC-73, Suprabenthic sledge, Box corer and Remoted operated vehicle), from 55 to 2291 m in depth. A total of 1015 species were identified at the ACS: 98 Porifera, 153 Cnidaria, 14 Brachiopoda, 22 Bryozoa, 97 Mollusca, 151 Annelida, 315 Arthropoda, 74 Echinodermata and 91 Chordata. New records for the Bay of Biscay fauna include 13 Porifera species, 17 Cnidaria, 7 Mollusca, Arthopoda, 3 Echinodermata and 4 Chordata. Also the bathymetric range of some species has been extended. As a result of the research projects carried out in the area in the last fifteen years, important information is now available which suggests that the ACS houses a large number of species with a high ecological value, that represents a biodiversity hotspot in terms of the presence of sponge aggregations and coral reefs in certain regions, and that it sustains important fisheries due to the abundance of comercial species. Given the relevance of the species and habitats occurring in the ACS, there is a need to implement a conservation and management plan of the area in order to maintain habitats in good state of preservation.
  •  
2.
  • Carvalho, Francisca C., et al. (författare)
  • Rock sponges (lithistid Demospongiae) of the Northeast Atlantic seamounts, with description of ten new species
  • 2020
  • Ingår i: PeerJ. - : PeerJ. - 2167-8359. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Lithistid demosponges, also known as rock sponges, are a polyphyletic group of sponges which are widely distributed. In the Northeast Atlantic (NEA), 17 species are known and the current knowledge on their distribution is mainly restricted to the Macaronesian islands. In the Mediterranean Sea, 14 species are recorded and generally found in marine caves.Methods: Lithistids were sampled in nine NEA seamounts during the scientific expeditions Seamount 1 (1987) and Seamount 2 (1993) organized by the MNHN of Paris. Collected specimens were identified through the analyses of external and internal morphological characters using light and scanning electron microscopy, and compared with material from various museum collections as well as literature records.Results: A total of 68 specimens were analysed and attributed to 17 species across two orders, seven families, and seven genera, representing new records of distribution. Ten of these species are new to science, viz. Neoschrammeniella inaequalis sp. nov., N. piserai sp. nov., N. pomponiae sp. nov., Discodermia arbor sp. nov., D. kellyae sp. nov., Macandrewia schusterae sp. nov., M. minima sp. nov., Exsuperantia levii sp. nov., Leiodermatium tuba sp. nov. and Siphonidium elongatus sp. nov., and are here described and illustrated. New bathymetric records were also found for D. ramifera, D. verrucosa and M. robusta. The Meteor seamount group has a higher species richness (15 species) compared to the Lusitanian seamount group (six species). The majority of the species had their distribution restricted to one seamount, and ten are only known from a single locality, but this can be a result of sample bias.Discussion: The number of species shared between the seamounts and the Macaronesian islands is very reduced. The same pattern repeats between the NEA and Mediterranean Sea. This study demonstrates that NEA seamounts are ecosystems with a higher diversity of lithistids than previously thought, increasing the number of lithistids known to occur in the NEA and Mediterranean Sea from 26 to 36 species.
  •  
3.
  • Koutsouveli, Vasiliki, et al. (författare)
  • Insights into the reproduction of some Antarctic dendroceratid, poecilosclerid, and haplosclerid demosponges
  • 2018
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 13:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Sponges are a dominant element of the Antarctic benthic communities, posing both high species richness and large population densities. Despite their importance in Antarctic ecosystems, very little is known about their reproductive patterns and strategies. In our study, we surveyed the tissue of six different species for reproductive elements, namely, Dendrilla antarctica Topsent, 1905 (order Dendroceratida), Phorbas areolatus (Thiele, 1905), Kirkpatrickia variolosa (Kirkpatrick, 1907), and Isodictya kerguelenensis (Ridley & Dendy, 1886) (order Poecilosclerida), and Hemigellius pilosus (Kirkpatrick, 1907) and Haliclona penicillata (Topsent, 1908) (Haplosclerida). Samples of these six species containing various reproductive elements were collected in Deception Island and were processed for both light and transmission electron microscopy (TEM). Even though we were not able to monitor the entire reproductive cycle, due to time and meteorological conditions, we report important aspects of the reproduction of these species. This includes oocyte and embryo morphology and cell ultrastructure, follicular structures and nurse cell activity, as well as vitellogenesis. All species were brooding their embryos within their mesohyl. Both oocytes and embryos were registered in the majority of the studied species, and a single sperm cell being carried to an egg for fertilization was observed in H. penicillata. While the reproductive periods of all species coincided temporally, some of them seemed to rely on a single spawning event, this being suggested by the synchronic oogenesis and embryogenesis occurrence of D. antarctica, P. areolatus and I. kerguelenensis. In contrast, K. variolosa had an asynchronous embryo development, which suggests several larval release events. Our results suggest that differences in the reproductive strategies and morphological traits might succeed in the coexistence of these species at the same habitat avoiding the direct competition between them.
  •  
4.
  • Taboada, Sergi, et al. (författare)
  • Genetic diversity, gene flow and hybridization in fan-shaped sponges (Phakellia spp.) in the North-East Atlantic deep sea
  • 2022
  • Ingår i: Deep Sea Research Part I. - : Elsevier. - 0967-0637 .- 1879-0119. ; 181
  • Tidskriftsartikel (refereegranskat)abstract
    • Deep-sea North Atlantic sponge grounds are crucial components of the marine fauna providing a key role in ecosystem functioning. To properly develop effective conservation and management plans, it is crucial to understand the genetic diversity, molecular connectivity patterns and turnover at the population level of the species involved. Here we present the study of two congeneric sponges, Phakellia robusta and Phakellia hirondellei, using multiple sources of evidence. Our phylogenetic study using a fragment of COI placed these two species as sister. Haplotype network analysis using COI revealed no genetic structure for P. hirondellei in samples from the Cantabrian Sea (<100 km). Contrastingly, P. robusta showed a clear genetic structure separating deep-water samples from the Cantabrian Sea and the Hatton-Rockall Basin, from samples from shallower waters from Kerry Head Reefs, NW of Orkney, and Norway. ddRADseq-derived SNPs for P. robusta also segregated samples by bathymetry rather than by geographical distances, and detected a predominant northwards migration for shallow-water specimens connecting sites separated ca. 2,000 km, probably thanks to prevalent oceanographic currents. Importantly, our analysis using SNPs combining the datasets of the two species revealed the presence of potential hybrids, which was corroborated by morphological (spicule) and microbial (16S amplicon sequencing) analyses. Our data suggest that hybridization between these two species occurred at least two times in the past. We discuss the importance of using next-generation techniques to unveil hybridization and the implications of our results for conservation.
  •  
5.
  • Taboada, Sergi, et al. (författare)
  • Insights into the symbiotic relationship between scale worms and carnivorous sponges (Cladorhizidae, Chondrocladia)
  • 2020
  • Ingår i: Deep Sea Research Part I. - : PERGAMON-ELSEVIER SCIENCE LTD. - 0967-0637 .- 1879-0119. ; 156
  • Tidskriftsartikel (refereegranskat)abstract
    • Symbiotic associations between polynoid scale worms and other marine invertebrates are common, but sometimes poorly understood. Compounding this problem is the fact that polynoid systematics is largely unresolved. Here, we transfer the species originally described as Nemidia antillicola chondrocladiae Fauvel (1943), and currently synonymized with Neopolynoe acanellae (Verrill, 1881), to the species Neopolynoe chondrocladiae n. comb. This species is characterized by living in association with the carnivorous sponges Chondrocladia robertballnrdi Cristobo, Rios, Pomponi & Xavier, 2015 and Chondrocladia virgata Thompson, 1873. The existence of specialized chaetae in N. chondrocladiae n. comb. and the occurrence of open galleries in the sponge, derived from a gradual overgrowth of the sponge to accommodate the worm, suggest an obligate symbiotic relationship between worm and sponge. The presence of a gravid female with relatively small oocytes (maximum diameter 56.94 +/- 14.89 mu m) suggests that N. chondrocladiae n. comb. is a gonochoristic broadcaster with a planktotrophic larva, a means of reproduction that would maximize the chances of this species finding new suitable hosts to colonize. We also provide a phylogenetic placement, using four genetic markers (18S, 28S, 16S and COI), for N. chondrocladiae n. comb. and N. acanellae, which confirms they are two different species. In addition, we also report here the occurrence of another deep-water polynoid species in association with the carnivorous sponge Chondrocladia vertical= Topsent, 1920, from the Gulf of Mexico, and place it in a phylogeny.
  •  
6.
  • Taboada, Sergi, et al. (författare)
  • Long distance dispersal and oceanographic fronts shape the connectivity of the keystone sponge Phakellia ventilabrum in the deep northeast Atlantic
  • 2023
  • Ingår i: Frontiers in Marine Science. - : Frontiers Media S.A.. - 2296-7745. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Little is known about dispersal in deep-sea ecosystems, especially for sponges, which are abundant ecosystem engineers. Understanding patterns of gene flow in deep-sea sponges is essential, especially in areas where rising pressure from anthropogenic activities makes difficult to combine management and conservation. Here, we combined population genomics and oceanographic modelling to understand how Northeast Atlantic populations (Cantabrian Sea to Norway) of the deep-sea sponge Phakellia ventilabrum are connected. The analysis comprised ddRADseq derived SNP datasets of 166 individuals collected from 57 sampling stations from 17 different areas, including two Marine Protected Areas, one Special Area of Conservation and other areas with different levels of protection. The 4,017 neutral SNPs used indicated high connectivity and panmixis amongst the majority of areas (Ireland to Norway), spanning ca. 2,500-km at depths of 99-900 m. This was likely due to the presence of strong ocean currents allowing long-distance larval transport, as supported by our migration analysis and by 3D particle tracking modelling. On the contrary, the Cantabrian Sea and Roscoff (France) samples, the southernmost areas in our study, appeared disconnected from the remaining areas, probably due to prevailing current circulation patterns and topographic features, which might be acting as barriers for gene flow. Despite this major genetic break, our results suggest that all protected areas studied are well-connected with each other. Interestingly, analysis of SNPs under selection replicated results obtained for neutral SNPs. The relatively low genetic diversity observed along the study area, though, highlights the potential fragility of this species to changing climates, which might compromise resilience to future threats.
  •  
7.
  • Xavier, Joana R., et al. (författare)
  • Systematics and biodiversity of deep-sea sponges of the Atlanto-Mediterranean region
  • 2015
  • Ingår i: Journal of the Marine Biological Association of the United Kingdom. - 0025-3154 .- 1469-7769. ; 95:7, s. 1285-1286
  • Tidskriftsartikel (refereegranskat)abstract
    • Sponges are a key component of the deep-sea benthos, where they form structurally complex habitats and provide numerous ecosystem goods and services. However, there is still an enormous knowledge gap regarding the diversity, distribution and systematics of this group. This special volume presents the results of the 1st International Workshop on Taxonomy of Atlanto-Mediterranean Deep-Sea Sponges, whereby world experts worked together to start filling in this gap. Herein, new species are described, new sponge-dominated communities are reported, and diversity and distribution patterns are enlightened for this area.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy