SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Croll Donald) "

Sökning: WFRF:(Croll Donald)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Croll, Donald A., et al. (författare)
  • Vulnerabilities and fisheries impacts : the uncertain future of manta and devil rays
  • 2016
  • Ingår i: Aquatic conservation. - : Wiley. - 1052-7613 .- 1099-0755. ; 26:3, s. 562-575
  • Forskningsöversikt (refereegranskat)abstract
    • 1. Manta and devil rays of the subfamily Mobulinae (mobulids) are rarely studied, large, pelagic elasmobranchs, with all eight of well-evaluated species listed on the IUCN Red List as threatened or near threatened. 2. Mobulids have life history characteristics (matrotrophic reproduction, extremely low fecundity, and delayed age of first reproduction) that make them exceptionally susceptible to overexploitation. 3. Targeted and bycatch mortality from fisheries is a globally important and increasing threat, and targeted fisheries are incentivized by the high value of the global trade in mobulid gill plates. 4. Fisheries bycatch of mobulids is substantial in tuna purse seine fisheries. 5. Thirteen fisheries in 12 countries specifically targeting mobulids, and 30 fisheries in 23 countries with mobulid bycatch were identified. 6. Aside from a few recently enacted national restrictions on capture, there is no comprehensive monitoring, assessment or control of mobulid fisheries or bycatch. Recent listing through the Convention on the International Trade in Endangered Species (CITES) may benefit mobulids of the genus Manta (manta rays), but none of the mobulids in the genus Mobula (devil rays) are protected. 7. The relative economic costs of catch mitigation are minimal, particularly compared with a broad range of other, more complicated, marine conservation issues. Copyright (C) 2015 John Wiley & Sons, Ltd.
  •  
2.
  • Elliott, Kyle H., et al. (författare)
  • Age-related variation in energy expenditure in a long-lived bird within the envelope of an energy ceiling
  • 2014
  • Ingår i: Journal of Animal Ecology. - : Wiley. - 0021-8790 .- 1365-2656. ; 83:1, s. 136-146
  • Tidskriftsartikel (refereegranskat)abstract
    • Energy expenditure in wild animals can be limited (i) intrinsically by physiological processes that constrain an animal's capacity to use energy, (ii) extrinsically by energy availability in the environment and/or (iii) strategically based on trade-offs between elevated metabolism and survival. Although these factors apply to all individuals within a population, some individuals expend more or less energy than other individuals. To examine the role of an energy ceiling in a species with a high and individually repeatable metabolic rate, we compared energy expenditure of thick-billed murres (Uria lomvia) with and without handicaps during a period of peak energy demand (chick-rearing, N=16). We also compared energy expenditure of unencumbered birds (N=260) across 8years exhibiting contrasting environmental conditions and correlated energy expenditure with fitness (reproductive success and survival). Murres experienced an energy ceiling mediated through behavioural adjustments. Handicapped birds decreased time spent flying/diving and chick-provisioning rates such that overall daily energy expenditure remained unchanged across the two treatments. The energy ceiling did not reflect energy availability or trade-offs with fitness, as energy expenditure was similar across contrasting foraging conditions and was not associated with reduced survival or increased reproductive success. We found partial support for the trade-off hypothesis as older murres, where prospects for future reproduction would be relatively limited, did overcome an energy ceiling to invest more in offspring following handicapping by reducing their own energy reserves. The ceiling therefore appeared to operate at the level of intake (i.e. digestion) rather than expenditure (i.e. thermal constraint, oxidative stress). A meta-analysis comparing responses of breeding animals to handicapping suggests that our results are typical: animals either reduced investment in themselves or in their offspring to remain below an energy ceiling. Across species, whether a handicapped individual invested in its own energy stores or its offspring's growth was not explained by life history (future vs. current reproductive potential). Many breeding animals apparently experience an intrinsic energy ceiling, and increased energy costs lead to a decline in self-maintenance and/or offspring provisioning.
  •  
3.
  • Poortvliet, Marloes, et al. (författare)
  • A dated molecular phylogeny of manta and devil rays (Mobulidae) based on mitogenome and nuclear sequences
  • 2015
  • Ingår i: Molecular Phylogenetics and Evolution. - : Elsevier BV. - 1055-7903 .- 1095-9513. ; 83, s. 72-85
  • Tidskriftsartikel (refereegranskat)abstract
    • Manta and devil rays are an iconic group of globally distributed pelagic filter feeders, yet their evolutionary history remains enigmatic. We employed next generation sequencing of mitogenomes for nine of the II recognized species and two outgroups; as well as additional Sanger sequencing of two mitochondria] and two nuclear genes in an extended taxon sampling set. Analysis of the mitogenome coding regions in a Maximum Likelihood and Bayesian framework provided a well-resolved phylogeny. The deepest divergences distinguished three clades with high support, one containing Manta birostris, Manta alfredi, Mobuki tarapacana, Mobula japanica and Mobula mobular; one containing Mobula kuhlii, Mobula eregoodootenkee and Mobula thurstoni; and one containing Mobula munkiana, Mobula hypostoma and Mobula rochebrunei. Mobula remains paraphyletic with the inclusion of Manta, a result that is in agreement with previous studies based on molecular and morphological data. A fossil-calibrated Bayesian random local clock analysis suggests that mobulids diverged from Rhinoptera around 30 Mya. Subsequent divergences are characterized by long internodes followed by short bursts of speciation extending from an initial episode of divergence in the Early and Middle Miocene (19-17 Mya) to a second episode during the Pliocene and Pleistocene (3.6 Mya - recent). Estimates of divergence dates overlap significantly with periods of global warming, during which upwelling intensity - and related high primary productivity in upwelling regions decreased markedly. These periods are hypothesized to have led to fragmentation and isolation of feeding regions leading to possible regional extinctions, as well as the promotion of allopatric speciation. The closely shared evolutionary history of mobulids in combination with ongoing threats from fisheries and climate change effects on upwelling and food supply, reinforces the case for greater protection of this charismatic family of pelagic filter feeders. (C) 2014 Elsevier Inc. All rights reserved.
  •  
4.
  • Stewart, Joshua D., et al. (författare)
  • Research Priorities to Support Effective Manta and Devil Ray Conservation
  • 2018
  • Ingår i: Frontiers in Marine Science. - : Frontiers Media S.A.. - 2296-7745. ; 5, s. 1-27
  • Forskningsöversikt (refereegranskat)abstract
    • Manta and devil rays are filter-feeding elasmobranchs that are found circumglobally in tropical and subtropical waters. Although relatively understudied for most of the Twentieth century, public awareness and scientific research on these species has increased dramatically in recent years. Much of this attention has been in response to targeted fisheries, international trade in mobulid products, and a growing concern over the fate of exploited populations. Despite progress in mobulid research, major knowledge gaps still exist, hindering the development of effective management and conservation strategies. We assembled 30 leaders and emerging experts in the fields of mobulid biology, ecology, and conservation to identify pressing knowledge gaps that must be filled to facilitate improved science-based management of these vulnerable species. We highlight focal research topics in the subject areas of taxonomy and diversity, life history, reproduction and nursery areas, population trends, bycatch and fisheries, spatial dynamics and movements, foraging and diving, pollution and contaminants, and sub-lethal impacts. Mobulid rays remain a poorly studied group, and therefore our list of important knowledge gaps is extensive. However, we hope that this identification of high priority knowledge gaps will stimulate and focus future mobulid research.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy