SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Crompton T) "

Search: WFRF:(Crompton T)

  • Result 1-10 of 15
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Alreshidi, M. M., et al. (author)
  • Changes in the Cytoplasmic Composition of Amino Acids and Proteins Observed in Staphylococcus aureus during Growth under Variable Growth Conditions Representative of the Human Wound Site
  • 2016
  • In: Plos One. - : Public Library of Science (PLoS). - 1932-6203. ; 11:7
  • Journal article (peer-reviewed)abstract
    • Staphylococcus aureus is an opportunistic pathogen responsible for a high proportion of nosocomial infections. This study was conducted to assess the bacterial responses in the cytoplasmic composition of amino acids and ribosomal proteins under various environmental conditions designed to mimic those on the human skin or within a wound site: pH6-8, temperature 35-37 degrees C, and additional 0-5% NaCl. It was found that each set of environmental conditions elicited substantial adjustments in cytoplasmic levels of glutamic acid, aspartic acid, proline, alanine and glycine (P < 0.05). These alterations generated characteristic amino acid profiles assessed by principle component analysis (PCA). Substantial alterations in cytoplasmic amino acid and protein composition occurred during growth under conditions of higher salinity stress implemented via additional levels of NaCl in the growth medium. The cells responded to additional NaCl at pH 6 by reducing levels of ribosomal proteins, whereas at pH 8 there was an upregulation of ribosomal proteins compared with the reference control. The levels of two ribosomal proteins, L32 and S19, remained constant across all experimental conditions. The data supported the hypothesis that the bacterium was continually responding to the dynamic environment by modifying the proteome and optimising metabolic homeostasis.
  •  
2.
  •  
3.
  •  
4.
  • Crompton, M. J., et al. (author)
  • Small changes in environmental parameters lead to alterations in antibiotic resistance, cell morphology and membrane fatty acid composition in Staphylococcus lugdunensis
  • 2014
  • In: PLoS ONE. - : Public Library of Science. - 1932-6203. ; 9:4
  • Journal article (peer-reviewed)abstract
    • Staphylococcus lugdunensis has emerged as a major cause of community-acquired and nosocomial infections. This bacterium can rapidly adapt to changing environmental conditions to survive and capitalize on opportunities to colonize and infect through wound surfaces. It was proposed that S. lugdunensis would have underlying alterations in metabolic homeostasis to provide the necessary levels of adaptive protection. The aims of this project were to examine the impacts of subtle variations in environmental conditions on growth characteristics, cell size and membrane fatty acid composition in S. lugdunensis. Liquid broth cultures of S. lugdunensis were grown under varying combinations of pH (6-8), temperature (35-39°C) and osmotic pressure (0-5% sodium chloride w/w) to reflect potential ranges of conditions encountered during transition from skin surfaces to invasion of wound sites. The cells were harvested at the mid-exponential phase of growth and assessed for antibiotic minimal inhibitory concentration (MIC), generation time, formation of small colony variants, cell size (by scanning electron microscopy) and membrane fatty acid composition. Stress regimes with elevated NaCl concentrations resulted in significantly higher antibiotic resistance (MIC) and three of the combinations with 5% NaCl had increased generation times (P<0.05). It was found that all ten experimental growth regimes, including the control and centroid cultures, yielded significantly different profiles of plasma membrane fatty acid composition (P<0.0001). Alterations in cell size (P<0.01) were also observed under the range of conditions with the most substantial reduction occurring when cells were grown at 39°C, pH 8 (514±52 nm, mean ± Standard Deviation) compared with cells grown under control conditions at 37°C with pH 7 (702±76 nm, P<0.01). It was concluded that S. lugdunensis responded to slight changes in environmental conditions by altering plasma membrane fatty acid composition, growth rates and morphology to achieve optimal adaptations for survival in changing environments. © 2014 Crompton et al.
  •  
5.
  • Dunstan, R. H., et al. (author)
  • Sweat facilitated amino acid losses in male athletes during exercise at 32-34°C
  • 2016
  • In: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 11:12
  • Journal article (peer-reviewed)abstract
    • Sweat contains amino acids and electrolytes derived from plasma and athletes can lose 1-2L of sweat per hour during exercise. Sweat may also contain contributions of amino acids as well as urea, sodium and potassium from the natural moisturizing factors (NMF) produced in the stratum corneum. In preliminary experiments, one participant was tested on three separate occasions to compare sweat composition with surface water washings from the same area of skin to assess contributions from NMF. Two participants performed a 40 minute self-paced cycle session with sweat collected from cleansed skin at regular intervals to assess the contributions to the sweat load from NMF over the period of exercise. The main study investigated sweat amino acid composition collected from nineteen male athletes following standardised endurance exercise regimes at 32-34°C and 20-30% RH. Plasma was also collected from ten of the athletes to compare sweat and plasma composition of amino acids. The amino acid profiles of the skin washings were similar to the sweat, suggesting that the NMF could contribute certain amino acids into sweat. Since the sweat collected from athletes contained some amino acid contributions from the skin, this fluid was subsequently referred to as "faux" sweat. Samples taken over 40 minutes of exercise showed that these contributions diminished over time and were minimal at 35 minutes. In the main study, the faux sweat samples collected from the athletes with minimal NMF contributions, were characterised by relatively high levels of serine, histidine, ornithine, glycine and alanine compared with the corresponding levels measured in the plasma. Aspartic acid was detected in faux sweat but not in the plasma. Glutamine and proline were lower in the faux sweat than plasma in all the athletes. Three phenotypic groups of athletes were defined based on faux sweat volumes and composition profiles of amino acids with varying relative abundances of histidine, serine, glycine and ornithine. It was concluded that for some individuals, faux sweat resulting from exercise at 32-34°C and 20-30% RH posed a potentially significant source of amino acid loss. © 2016 Dunstan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
  •  
6.
  • Dunstan, R. H., et al. (author)
  • Sweat facilitated losses of amino acids in Standardbred horses and the application of supplementation strategies to maintain condition during training
  • 2015
  • In: Comparative Exercise Physiology. - : Wageningen Academic Publishers. - 1755-2540 .- 1755-2559. ; 11:4, s. 201-212
  • Journal article (peer-reviewed)abstract
    • Little is known about the amino acid composition of horse sweat, but significant fluid losses can occur during exercise with the potential to facilitate substantial nutrient losses. Sweat and plasma amino acid compositions for Standardbred horses were assessed to determine losses during a standardised training regime. Two cohorts of horses 2013 (n=5) and 2014 (n=6) were assessed to determine baseline levels of plasma and sweat amino acids. An amino acid supplement designed to counter losses in sweat during exercise was provided after morning exercise daily for 5 weeks (2013, n=5; 2014, n=4). After the supplementation period, blood and sweat samples were collected to assess amino acid composition changes. From baseline assessments of sweat in both cohorts, it was found that serine, glutamic acid, histidine and phenylalanine were present at up to 9 times the corresponding plasma concentrations and aspartic acid at 0-2.2 mu mol/l in plasma was measured at 154-262 mu mol/l in sweat. In contrast, glutamine, asparagine, methionine and cystine were conserved in the plasma by having lower concentrations in the sweat. The predominant plasma amino acids were glycine, glutamine, alanine, valine, serine, lysine and leucine. As the sweat amino acid profile did not simply reflect plasma composition, it was proposed that mechanisms exist to generate high concentrations of certain amino acids in sweat whilst selectively preventing the loss of others. The estimated amino acid load in 16 l of circulating plasma was 3.8-4.3 g and the calculated loss via sweat during high intensity exercise was 1.6-3.0 g. Following supplementation, total plasma amino acid levels from both cohorts increased from initial levels of 2,293 and 2,044 mu mol/l to post-supplementation levels of 2,674 and 2,663 mu mol/l respectively (P<0.05). It was concluded that the strategy of providing free amino acids immediately after exercise resulted in raising resting plasma amino acid levels.
  •  
7.
  •  
8.
  •  
9.
  • Jin, S. C., et al. (author)
  • Mutations disrupting neuritogenesis genes confer risk for cerebral palsy
  • 2020
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 52:10
  • Journal article (peer-reviewed)abstract
    • Whole-exome sequencing of 250 parent-offspring trios identifies an enrichment of rare damaging de novo mutations in individuals with cerebral palsy and implicates genetically mediated dysregulation of early neuronal connectivity in the etiology of this disorder. In addition to commonly associated environmental factors, genomic factors may cause cerebral palsy. We performed whole-exome sequencing of 250 parent-offspring trios, and observed enrichment of damaging de novo mutations in cerebral palsy cases. Eight genes had multiple damaging de novo mutations; of these, two (TUBA1AandCTNNB1) met genome-wide significance. We identified two novel monogenic etiologies,FBXO31andRHOB, and showed that theRHOBmutation enhances active-state Rho effector binding while theFBXO31mutation diminishes cyclin D levels. Candidate cerebral palsy risk genes overlapped with neurodevelopmental disorder genes. Network analyses identified enrichment of Rho GTPase, extracellular matrix, focal adhesion and cytoskeleton pathways. Cerebral palsy risk genes in enriched pathways were shown to regulate neuromotor function in aDrosophilareverse genetics screen. We estimate that 14% of cases could be attributed to an excess of damaging de novo or recessive variants. These findings provide evidence for genetically mediated dysregulation of early neuronal connectivity in cerebral palsy.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view