SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Cryan J.) "

Sökning: WFRF:(Cryan J.)

  • Resultat 1-10 av 29
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Barillot, T., et al. (författare)
  • Correlation-Driven Transient Hole Dynamics Resolved in Space and Time in the Isopropanol Molecule
  • 2021
  • Ingår i: Physical Review X. - : American Physical Society. - 2160-3308. ; 11:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The possibility of suddenly ionized molecules undergoing extremely fast electron hole (or hole) dynamics prior to significant structural change was first recognized more than 20 years ago and termed charge migration. The accurate probing of ultrafast electron hole dynamics requires measurements that have both sufficient temporal resolution and can detect the localization of a specific hole within the molecule. We report an investigation of the dynamics of inner valence hole states in isopropanol where we use an x-ray pump-x-ray probe experiment, with site and state-specific probing of a transient hole state localized near the oxygen atom in the molecule, together with an ab initio theoretical treatment. We record the signature of transient hole dynamics and make the first tentative observation of dynamics driven by frustrated Auger-Meitner transitions. We verify that the effective hole lifetime is consistent with our theoretical prediction. This state-specific measurement paves the way to widespread application for observations of transient hole dynamics localized in space and time in molecules and thus to charge transfer phenomena that are fundamental in chemical and material physics.
  •  
2.
  • Sanchez-Gonzalez, A., et al. (författare)
  • Accurate prediction of X-ray pulse properties from a free-electron laser using machine learning
  • 2017
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Free-electron lasers providing ultra-short high-brightness pulses of X-ray radiation have great potential for a wide impact on science, and are a critical element for unravelling the structural dynamics of matter. To fully harness this potential, we must accurately know the X-ray properties: intensity, spectrum and temporal profile. Owing to the inherent fluctuations in free-electron lasers, this mandates a full characterization of the properties for each and every pulse. While diagnostics of these properties exist, they are often invasive and many cannot operate at a high-repetition rate. Here, we present a technique for circumventing this limitation. Employing a machine learning strategy, we can accurately predict X-ray properties for every shot using only parameters that are easily recorded at high-repetition rate, by training a model on a small set of fully diagnosed pulses. This opens the door to fully realizing the promise of next-generation high-repetition rate X-ray lasers.
  •  
3.
  •  
4.
  • McFarland, B. K., et al. (författare)
  • Ultrafast X-ray Auger probing of photoexcited molecular dynamics
  • 2014
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 5, s. 4235-
  • Tidskriftsartikel (refereegranskat)abstract
    • Molecules can efficiently and selectively convert light energy into other degrees of freedom. Disentangling the underlying ultrafast motion of electrons and nuclei of the photoexcited molecule presents a challenge to current spectroscopic approaches. Here we explore the photoexcited dynamics of molecules by an interaction with an ultrafast X-ray pulse creating a highly localized core hole that decays via Auger emission. We discover that the Auger spectrum as a function of photoexcitation-X-ray-probe delay contains valuable information about the nuclear and electronic degrees of freedom from an element-specific point of view. For the nucleobase thymine, the oxygen Auger spectrum shifts towards high kinetic energies, resulting from a particular C-O bond stretch in the pi pi* photoexcited state. A subsequent shift of the Auger spectrum towards lower kinetic energies displays the electronic relaxation of the initial photoexcited state within 200 fs. Ab-initio simulations reinforce our interpretation and indicate an electronic decay to the n pi* state.
  •  
5.
  • Sanchez-Gonzalez, A., et al. (författare)
  • Auger electron and photoabsorption spectra of glycine in the vicinity of the oxygen K-edge measured with an X-FEL
  • 2015
  • Ingår i: Journal of Physics B-Atomic Molecular and Optical Physics. - : IOP Publishing. - 0953-4075 .- 1361-6455. ; 48:23
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the first measurement of the near oxygen K-edge auger spectrum of the glycine molecule. Our work employed an x-ray free electron laser as the photon source operated with input photon energies tunable between 527 and 547 eV. Complete electron spectra were recorded at each photon energy in the tuning range, revealing resonant and non-resonant auger structures. Finally ab initio theoretical predictions are compared with the measured above the edge auger spectrum and an assignment of auger decay channels is performed.
  •  
6.
  • Fritz, N., et al. (författare)
  • The serotonin receptor 3E variant is a risk factor for female IBS-D
  • 2022
  • Ingår i: Journal of Molecular Medicine-Jmm. - : Springer Science and Business Media LLC. - 0946-2716 .- 1432-1440. ; 100:11, s. 1617-1627
  • Tidskriftsartikel (refereegranskat)abstract
    • Irritable bowel syndrome (IBS) is a gut-brain disorder of multifactorial origin. Evidence of disturbed serotonergic function in IBS accumulated for the 5-HT3 receptor family. 5-HT(3)Rs are encoded by HTR3 genes and control GI function, and peristalsis and secretion, in particular. Moreover, 5-HT3R antagonists are beneficial in the treatment of diarrhea predominant IBS (IBS-D). We previously reported on functionally relevant SNPs in HTR3A c.-42C > T (rs1062613), HTR3C p.N163K (rs6766410), and HTR3E c.*76G > A (rs56109847 = rs62625044) being associated with IBS-D, and the HTR3B variant p.Y129S (rs1176744) was also described within the context of IBS. We performed a multi-center study to validate previous results and provide further evidence for the relevance of HTR3 genes in IBS pathogenesis. Therefore, genotype data of 2682 IBS patients and 9650 controls from 14 cohorts (Chile, Germany (2), Greece, Ireland, Spain, Sweden (2), the UK (3), and the USA (3)) were taken into account. Subsequent meta-analysis confirmed HTR3E c.*76G > A (rs56109847 = rs62625044) to be associated with female IBS-D (OR = 1.58; 95% CI (1.18, 2.12)). Complementary expression studies of four GI regions (jejunum, ileum, colon, sigmoid colon) of 66 IBS patients and 42 controls revealed only HTR3E to be robustly expressed. On top, HTR3E transcript levels were significantly reduced in the sigma of IBS patients (p = 0.0187); more specifically, in those diagnosed with IBS-D (p = 0.0145). In conclusion, meta-analysis confirmed rs56109847 = rs62625044 as a risk factor for female IBS-D. Expression analysis revealed reduced HTR3E levels in the sigmoid colon of IBS-D patients, which underlines the relevance of HTR3E in the pathogenesis of IBS-D.
  •  
7.
  •  
8.
  • Berrah, N., et al. (författare)
  • Femtosecond-resolved observation of the fragmentation of buckminsterfullerene following X-ray multiphoton ionization
  • 2019
  • Ingår i: Nature Physics. - : Springer Science and Business Media LLC. - 1745-2473 .- 1745-2481. ; 15, s. 1279-1283
  • Tidskriftsartikel (refereegranskat)abstract
    • X-ray free-electron lasers have, over the past decade, opened up the possibility of understanding the ultrafast response of matter to intense X-ray pulses. In earlier research on atoms and small molecules, new aspects of this response were uncovered, such as rapid sequences of inner-shell photoionization and Auger ionization. Here, we studied a larger molecule, buckminsterfullerene (C60), exposed to 640eV X-rays, and examined the role of chemical effects, such as chemical bonds and charge transfer, on the fragmentation following multiple ionization of the molecule. To provide time resolution, we performed femtosecond-resolved X-ray pump/X-ray probe measurements, which were accompanied by advanced simulations. The simulations and experiment reveal that despite substantial ionization induced by the ultrashort (20fs) X-ray pump pulse, the fragmentation of C60 is considerably delayed. This work uncovers the persistence of the molecular structure of C60, which hinders fragmentation over a timescale of hundreds of femtoseconds. Furthermore, we demonstrate that a substantial fraction of the ejected fragments are neutral carbon atoms. These findings provide insights into X-ray free-electron laser-induced radiation damage in large molecules, including biomolecules.
  •  
9.
  • Frasinski, L. J., et al. (författare)
  • Dynamics of Hollow Atom Formation in Intense X-Ray Pulses Probed by Partial Covariance Mapping
  • 2013
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 111:7, s. 073002-
  • Tidskriftsartikel (refereegranskat)abstract
    • When exposed to ultraintense x-radiation sources such as free electron lasers (FELs) the innermost electronic shell can efficiently be emptied, creating a transient hollow atom or molecule. Understanding the femtosecond dynamics of such systems is fundamental to achieving atomic resolution in flash diffraction imaging of noncrystallized complex biological samples. We demonstrate the capacity of a correlation method called partial covariance mapping'' to probe the electron dynamics of neon atoms exposed to intense 8 fs pulses of 1062 eV photons. A complete picture of ionization processes competing in hollow atom formation and decay is visualized with unprecedented ease and the map reveals hitherto unobserved nonlinear sequences of photoionization and Auger events. The technique is particularly well suited to the high counting rate inherent in FEL experiments.
  •  
10.
  • Gomez, L. F., et al. (författare)
  • Shapes and vorticities of superfluid helium nanodroplets
  • 2014
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 345:6199, s. 906-909
  • Tidskriftsartikel (refereegranskat)abstract
    • Helium nanodroplets are considered ideal model systems to explore quantum hydrodynamics in self-contained, isolated superfluids. However, exploring the dynamic properties of individual droplets is experimentally challenging. In this work, we used single-shot femtosecond x-ray coherent diffractive imaging to investigate the rotation of single, isolated superfluid helium-4 droplets containing ~108 to 1011 atoms. The formation of quantum vortex lattices inside the droplets is confirmed by observing characteristic Bragg patterns from xenon clusters trapped in the vortex cores. The vortex densities are up to five orders of magnitude larger than those observed in bulk liquid helium. The droplets exhibit large centrifugal deformations but retain axially symmetric shapes at angular velocities well beyond the stability range of viscous classical droplets.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 29

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy