SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Cudin I.) "

Sökning: WFRF:(Cudin I.)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Pinaroli, G., et al. (författare)
  • PERCIVAL : Possible applications in X-ray micro-tomography
  • 2020
  • Ingår i: Journal of Instrumentation. - 1748-0221. ; 15:2
  • Tidskriftsartikel (refereegranskat)abstract
    • X-ray computed micro-tomography (μCT) is one of the most advanced and common non-destructive techniques in the field of medical imaging and material science. It allows recreating virtual models (3D models), without destroying the original objects, by measuring three-dimensional X-ray attenuation coefficient maps of samples on the (sub) micrometer scale. The quality of the images obtained using μCT is strongly dependent on the performance of the associated X-ray detector i.e. to the acquisition of information of the X-ray beam traversing the patient/sample being precise and accurate. Detectors for μCT have to meet the requirements of the specific tomography procedure in which they are going to be used. In general, the key parameters are high spatial resolution, high dynamic range, uniformity of response, high contrast sensitivity, fast acquisition readout and support of high frame rates. At present the detection devices in commercial μCT scanners are dominated by charge-coupled devices (CCD), photodiode arrays, CMOS acquisition circuits and more recently by hybrid pixel detectors. Monolithic CMOS imaging sensors, which offer reduced pixel sizes and low electronic noise, are certainly excellent candidates for μCT and may be used for the development of novel high-resolution imaging applications. The uses of monolithic CMOS based detectors such as the PERCIVAL detector are being recently explored for synchrotron and FEL applications. PERCIVAL was developed to operate in synchrotron and FEL facilities in the soft X-ray regime from 250 eV to 1 keV and it could offer all the aforementioned technical requirements needed in μCT experiments. In order to adapt the system for a typical tomography application, a scintillator is required, to convert incoming X-ray radiation (∼ tens of KeV) into visible light which may be detected with high efficiency. Such a taper-based scintillator was developed and mounted in front of the sensitive area of the PERCIVAL imager. In this presentation we will report the setup of the detector system and preliminary results of first μCTs of reference objects, which were performed in the TomoLab at ELETTRA. 
  •  
2.
  • Allaria, E., et al. (författare)
  • Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet
  • 2012
  • Ingår i: Nature Photonics. - 1749-4885. ; 6:10, s. 699-704
  • Tidskriftsartikel (refereegranskat)abstract
    • Free-electron lasers (FELs) are promising devices for generating light with laser-like properties in the extreme ultraviolet and X-ray spectral regions. Recently, FELs based on the self-amplified spontaneous emission (SASE) mechanism have allowed major breakthroughs in diffraction and spectroscopy applications, despite the relatively large shot-to-shot intensity and photon-energy fluctuations and the limited longitudinal coherence inherent in the SASE mechanism. Here, we report results on the initial performance of the FERMI seeded FEL, based on the high-gain harmonic generation configuration, in which an external laser is used to initiate the emission process. Emission from the FERMI FEL-1 source occurs in the form of pulses carrying energy of several tens of microjoules per pulse and tunable throughout the 65 to 20 nm wavelength range, with unprecedented shot-to-shot wavelength stability, low-intensity fluctuations, close to transform-limited bandwidth, transverse and longitudinal coherence and full control of polarization.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy