SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Cupertino J. A.) "

Sökning: WFRF:(Cupertino J. A.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Patel, Y., et al. (författare)
  • Virtual Ontogeny of Cortical Growth Preceding Mental Illness
  • 2022
  • Ingår i: Biological Psychiatry. - : Elsevier BV. - 0006-3223 .- 1873-2402. ; 92:4, s. 299-313
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Morphology of the human cerebral cortex differs across psychiatric disorders, with neurobiology and developmental origins mostly undetermined. Deviations in the tangential growth of the cerebral cortex during pre/perinatal periods may be reflected in individual variations in cortical surface area later in life. Methods: Interregional profiles of group differences in surface area between cases and controls were generated using T1-weighted magnetic resonance imaging from 27,359 individuals including those with attention-deficit/hyperactivity disorder, autism spectrum disorder, bipolar disorder, major depressive disorder, schizophrenia, and high general psychopathology (through the Child Behavior Checklist). Similarity of interregional profiles of group differences in surface area and prenatal cell-specific gene expression was assessed. Results: Across the 11 cortical regions, group differences in cortical area for attention-deficit/hyperactivity disorder, schizophrenia, and Child Behavior Checklist were dominant in multimodal association cortices. The same interregional profiles were also associated with interregional profiles of (prenatal) gene expression specific to proliferative cells, namely radial glia and intermediate progenitor cells (greater expression, larger difference), as well as differentiated cells, namely excitatory neurons and endothelial and mural cells (greater expression, smaller difference). Finally, these cell types were implicated in known pre/perinatal risk factors for psychosis. Genes coexpressed with radial glia were enriched with genes implicated in congenital abnormalities, birth weight, hypoxia, and starvation. Genes coexpressed with endothelial and mural genes were enriched with genes associated with maternal hypertension and preterm birth. Conclusions: Our findings support a neurodevelopmental model of vulnerability to mental illness whereby prenatal risk factors acting through cell-specific processes lead to deviations from typical brain development during pregnancy.
  •  
2.
  •  
3.
  •  
4.
  • Ketzer, João Marcelo, et al. (författare)
  • Gravity complexes as a focus of seafloor fluid seepage : the Rio Grande Cone, SE Brazil
  • 2023
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Seafloor methane emissions can affect Earth’s climate and ocean chemistry. Vast quantities of methane formed by microbial decomposition of organic matter are locked within gas hydrate and free gas on continental slopes, particularly in large areas with high sediment accumulations such as deep-sea fans. The release of methane in slope environments has frequently been associated with dissociation of gas hydrates near the edge of the gas hydrate stability zone on the upper slope, with discharges in greater water depths less understood. Here we show, using data from the Rio Grande Cone (western South Atlantic), that the intrinsic, gravity-induced downslope collapse of thick slope sediment accumulations creates structures that serve as pathways for gas migration, unlocking methane and causing seafloor emissions via giant gas flares in the water column. The observed emissions in the study region (up to 310 Mg year−1) are three times greater than estimates for the entire US North Atlantic margin and reveal the importance of collapsing sediment accumulations for ocean carbon cycling. Similar outgassing systems on the Amazon and Niger fans suggest that gravity tectonics on passive margins is a common yet overlooked mechanism driving massive seafloor methane emissions in sediment-laden continental slopes. © 2023, The Author(s).
  •  
5.
  • Ketzer, João Marcelo, et al. (författare)
  • Gas hydrate dissociation linked to contemporary ocean warming in the southern hemisphere
  • 2020
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 11:1, s. 1-9
  • Tidskriftsartikel (refereegranskat)abstract
    • Ocean warming related to climate change has been proposed to cause the dissociation of gas hydrate deposits and methane leakage on the seafloor. This process occurs in places where the edge of the gas hydrate stability zone in sediments meets the overlying warmer oceans in upper slope settings. Here we present new evidence based on the analysis of a large multi-disciplinary and multi-scale dataset from such a location in the western South Atlantic, which records massive gas release to the ocean. The results provide a unique opportunity to examine ocean-hydrate interactions over millennial and decadal scales, and the first evidence from the southern hemisphere for the effects of contemporary ocean warming on gas hydrate stability. Widespread hydrate dissociation results in a highly focused advective methane flux that is not fully accessible to anaerobic oxidation, challenging the assumption that it is mostly consumed by sulfate reduction before reaching the seafloor.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy