SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Curren Rodger) "

Sökning: WFRF:(Curren Rodger)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Clothier, Richard, et al. (författare)
  • A database of IC50 values and principal component analysis of results from six basal cytotoxicity assays, for use in the modelling of the in vivo and in vitro data of the EU ACuteTox project.
  • 2008
  • Ingår i: Altern Lab Anim. - 0261-1929. ; 36:5, s. 503-19
  • Tidskriftsartikel (refereegranskat)abstract
    • The main aim of the ACuteTox project (part of the EU 6th Framework programme) is to demonstrate that animal tests for acute systemic toxicity can be replaced by alternative in vitro assays. In this project, data for 97 reference chemicals were collected in the AcuBase database, designed to handle deposited in vitro and in vivo (human and animal) data. To demonstrate the applicability of in vitro basal cytotoxicity tests and in vitro-in vivo modelling, it was deemed necessary to obtain data that were generated via defined standard operating procedures. The molar basal cytotoxicity IC50 values (the 50% inhibitory concentrations for the endpoint measured) for a mouse fibroblast cell line (3T3), a human hepatic cell line (HepG2), a rat hepatic cell line (Fa32), and a human neutrophil cell line (HL-60), were compared, and gave an R(2) correlation of 0.83. To identify chemicals that showed differential cytotoxicity to the various cell types involved, principal component analysis (PCA) was undertaken independently, once all the results had been returned. This showed that colchicine, cycloheximide, digoxin, 5-fluorouracil and hexachlorobenzene gave the lowest correlations with the first score vector of the PCA. The results presented are to be used to identify outliers that need to be further studied via the use of tissue-specific in vitro assays.
  •  
2.
  • Forsby, Anna, 1963-, et al. (författare)
  • Predicting eye stinging potential of baby shampoos by assessing TRPV1 channel activity
  • 2012
  • Ingår i: Toxicology Letters. - : Elsevier BV. - 0378-4274 .- 1879-3169. ; 211, s. S113-S113
  • Tidskriftsartikel (refereegranskat)abstract
    • The Transient Receptor Potential Vanilloid type 1 (TRPV1) receptor is one of the most well characterized pain-inducing receptors. The purpose of this study was to predict human eye stinging of 19 baby bath and shampoo formulations by studying TRPV1 activity. The NociOcular test, a novel recombinant neuronal in vitro model with high expression of functional TRPV1 channels was used to test shampoo formulations containing surfactants, preservatives, and fragrances (sodium laureth sulfate, cocoamidopropylbetaine, cocoglucoside, sodium benzoate, quaternium-15, etc.). The increase in intracellular free Ca2+ was analysed by fluorescence during exposure. TRPV1-specific Ca2+ influx was abolished when the TRPV1 channel antagonist capsazepine was applied to the cells prior to shampoo samples. The positive control, i.e. adult shampoo, was the most active sample tested in the NociOcular test and also induced the worst stinging sensation. The negative control, i.e. marketed baby shampoo, was negative in both tests. Seven of the formulations induced stinging in the human test, and of those six were positive in the NociOcular test. Twelve of the formulations were classified as non-stinging in the human test, and of those 10 were negative in the NociOcular test. None of the established in vitro tests for eye irritation were able to correctly predict the human stinging sensation of the baby products. Our data support that the TRPV1 channel is a principle mediator of eye stinging sensation induced by baby bath and shampoo formulations and that the NociOcular test may be a valuable in vitro tool to predict human eye stinging sensation.
  •  
3.
  • Forsby, Anna, et al. (författare)
  • Using Novel In Vitro NociOcular Assay Based on TRPV1 Channel Activation for Prediction of Eye Sting Potential of Baby Shampoos
  • 2012
  • Ingår i: Toxicological Sciences. - : Oxford University Press (OUP). - 1096-6080 .- 1096-0929. ; 129:2, s. 325-331
  • Tidskriftsartikel (refereegranskat)abstract
    • The transient receptor potential vanilloid type 1 (TRPV1) channel is one of the most well-characterized pain-inducing receptors. The purpose of this study was to predict human eye stinging of 19 baby bath and shampoo formulations by studying TRPV1 activity, as measured by increase in intracellular free Ca2+. The NociOcular test, a novel recombinant neuronal in vitro model with high expression of functional TRPV1 channels, was used to test formulations containing a variety of surfactants, preservatives, and fragrances. TRPV1-specific Ca2+ influx was abolished when the TRPV1 channel antagonist capsazepine was applied to the cells prior to shampoo samples. The positive control, an adult shampoo that contains cocamide monoethanolamine (CMEA), a known stinging ingredient, was the most active sample tested in the NociOcular test. The negative control, a marketed baby shampoo, was negative in the NociOcular and human tests. Seven of the formulations induced stinging in the human test, and of those six were positive in the NociOcular test. Twelve formulations were classified as nonstinging in the human test, and of those ten were negative in the NociOcular test. There was no correlation between the clinical stinging results for the baby formulations and the data generated from other in vitro eye irritation assays (cytosensor microphysiometer, neutral red uptake, EpiOcular, transepithelial permeability). Our data support that the TRPV1 channel is a principal mediator of eye-stinging sensation induced by baby bath and shampoo formulations and that the NociOcular test may be a valuable in vitro tool to predict human eye stinging sensation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy