SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Custodio C. L.) "

Sökning: WFRF:(Custodio C. L.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Parra, M. A., et al. (författare)
  • Biomarkers for dementia in Latin American countries: Gaps and opportunities
  • 2023
  • Ingår i: Alzheimers & Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 19:2, s. 721-735
  • Tidskriftsartikel (refereegranskat)abstract
    • Limited knowledge on dementia biomarkers in Latin American and Caribbean (LAC) countries remains a serious barrier. Here, we reported a survey to explore the ongoing work, needs, interests, potential barriers, and opportunities for future studies related to biomarkers. The results show that neuroimaging is the most used biomarker (73%), followed by genetic studies (40%), peripheral fluids biomarkers (31%), and cerebrospinal fluid biomarkers (29%). Regarding barriers in LAC, lack of funding appears to undermine the implementation of biomarkers in clinical or research settings, followed by insufficient infrastructure and training. The survey revealed that despite the above barriers, the region holds a great potential to advance dementia biomarkers research. Considering the unique contributions that LAC could make to this growing field, we highlight the urgent need to expand biomarker research. These insights allowed us to propose an action plan that addresses the recommendations for a biomarker framework recently proposed by regional experts.
  •  
2.
  •  
3.
  • Custodio, C. L., et al. (författare)
  • Effect of a chemical treatment series on the structure and mechanical properties of abaca fiber (Musa textilis)
  • 2020
  • Ingår i: Materials Science Forum. - : Trans Tech Publications, Ltd.. ; , s. 64-69
  • Konferensbidrag (refereegranskat)abstract
    • This study investigates the relationships between the composition, cell wall microstructure, and mechanical properties of the abaca fiber. Raw abaca fibers have undergone a series of sequential chemical treatments (acetone/methanol, boiling water, EDTA, HCl, NaClO2, and NaOH) to selectively remove certain non-cellulosic components (NCCs) in the fiber, such as waxes, water-soluble fragments, pectin, and lignin in a step-by-step manner. Changes in composition, morphology, and mechanical properties were observed using FTIR spectroscopy and ion chromatography, digital microscope and SEM, and tensile tests, respectively. The raw fiber was composed of 23% NCCs, 18% hemicellulose, and 58% cellulose, and exhibited a 17.4 GPa Young’s modulus and a 444 MPa tensile strength. Furthermore, the raw abaca fibers demonstrated a linear tensile graph without yielding, and a planar fracture surface without fiber pull-outs, thus suggesting a highly elastic but brittle nature. At the end of the alkali treatment, the fibrillated fiber was 83% cellulose, yet the stiffness and strength dropped to 7.3 GPa and 55 MPa, respectively, as more components were removed, and microfibril relaxation and realignment have occurred. Load-bearing cellulose and hemicellulose accounted for 42% and 36% of the stiffness, respectively, due to –OH groups capable of hydrogen bonding. 63% of the strength was due to thenative NCC matrices, which contribute a significant role within the cell wall’s load-transfer activities.
  •  
4.
  • Custodio, TF, et al. (författare)
  • Selection, biophysical and structural analysis of synthetic nanobodies that effectively neutralize SARS-CoV-2
  • 2020
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11:1, s. 5588-
  • Tidskriftsartikel (refereegranskat)abstract
    • The coronavirus SARS-CoV-2 is the cause of the ongoing COVID-19 pandemic. Therapeutic neutralizing antibodies constitute a key short-to-medium term approach to tackle COVID-19. However, traditional antibody production is hampered by long development times and costly production. Here, we report the rapid isolation and characterization of nanobodies from a synthetic library, known as sybodies (Sb), that target the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein. Several binders with low nanomolar affinities and efficient neutralization activity were identified of which Sb23 displayed high affinity and neutralized pseudovirus with an IC50 of 0.6 µg/ml. A cryo-EM structure of the spike bound to Sb23 showed that Sb23 binds competitively in the ACE2 binding site. Furthermore, the cryo-EM reconstruction revealed an unusual conformation of the spike where two RBDs are in the ‘up’ ACE2-binding conformation. The combined approach represents an alternative, fast workflow to select binders with neutralizing activity against newly emerging viruses.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy