SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(D'Andrea Stephen D.) "

Sökning: WFRF:(D'Andrea Stephen D.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aprile, E., et al. (författare)
  • Search for New Physics in Electronic Recoil Data from XENONnT
  • 2022
  • Ingår i: Physical Review Letters. - : American Physical Society. - 0031-9007 .- 1079-7114. ; 129:16
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on a blinded analysis of low-energy electronic recoil data from the first science run of the XENONnT dark matter experiment. Novel subsystems and the increased 5.9 ton liquid xenon target reduced the background in the (1, 30) keV search region to (15.8±1.3)  events/(ton×year×keV), the lowest ever achieved in a dark matter detector and ∼5 times lower than in XENON1T. With an exposure of 1.16 ton-years, we observe no excess above background and set stringent new limits on solar axions, an enhanced neutrino magnetic moment, and bosonic dark matter.
  •  
2.
  • Bolton, Kelly L., et al. (författare)
  • Association Between BRCA1 and BRCA2 Mutations and Survival in Women With Invasive Epithelial Ovarian Cancer
  • 2012
  • Ingår i: JAMA: The Journal of the American Medical Association. - : American Medical Association (AMA). - 1538-3598. ; 307:4, s. 382-390
  • Tidskriftsartikel (refereegranskat)abstract
    • Context Approximately 10% of women with invasive epithelial ovarian cancer (EOC) carry deleterious germline mutations in BRCA1 or BRCA2. A recent article suggested that BRCA2-related EOC was associated with an improved prognosis, but the effect of BRCA1 remains unclear. Objective To characterize the survival of BRCA carriers with EOC compared with noncarriers and to determine whether BRCA1 and BRCA2 carriers show similar survival patterns. Design, Setting, and Participants A pooled analysis of 26 observational studies on the survival of women with ovarian cancer, which included data from 1213 EOC cases with pathogenic germline mutations in BRCA1 (n=909) or BRCA2 (n=304) and from 2666 noncarriers recruited and followed up at variable times between 1987 and 2010 (the median year of diagnosis was 1998). Main Outcome Measure Five-year overall mortality. Results The 5-year overall survival was 36% (95% CI, 34%-38%) for noncarriers, 44% (95% CI, 40%-48%) for BRCA1 carriers, and 52% (95% CI, 46%-58%) for BRCA2 carriers. After adjusting for study and year of diagnosis, BRCA1 and BRCA2 mutation carriers showed a more favorable survival than noncarriers (for BRCA1: hazard ratio [HR], 0.78; 95% CI, 0.68-0.89; P<.001; and for BRCA2: HR, 0.61; 95% CI, 0.50-0.76; P<.001). These survival differences remained after additional adjustment for stage, grade, histology, and age at diagnosis (for BRCA1: HR, 0.73; 95% CI, 0.64-0.84; P<.001; and for BRCA2: HR, 0.49; 95% CI, 0.39-0.61; P<.001). The BRCA1 HR estimate was significantly different from the HR estimated in the adjusted model (P for heterogeneity=.003). Conclusion Among patients with invasive EOC, having a germline mutation in BRCA1 or BRCA2 was associated with improved 5-year overall survival. BRCA2 carriers had the best prognosis. JAMA. 2012;307(4):382-390
  •  
3.
  • Croft, Betty, et al. (författare)
  • Processes controlling the annual cycle of Arctic aerosol number and size distributions
  • 2016
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 16:6, s. 3665-3682
  • Tidskriftsartikel (refereegranskat)abstract
    • Measurements at high-Arctic sites (Alert, Nunavut, and Mt. Zeppelin, Svalbard) during the years 2011 to 2013 show a strong and similar annual cycle in aerosol number and size distributions. Each year at both sites, the number of aerosols with diameters larger than 20 nm exhibits a minimum in October and two maxima, one in spring associated with a dominant accumulation mode (particles 100 to 500 nm in diameter) and a second in summer associated with a dominant Aitken mode (particles 20 to 100 nm in diameter). Seasonal-mean aerosol effective diameter from measurements ranges from about 180 in summer to 260 nm in winter. This study interprets these annual cycles with the GEOS-Chem-TOMAS global aerosol microphysics model. Important roles are documented for several processes (new-particle formation, coagulation scavenging in clouds, scavenging by precipitation, and transport) in controlling the annual cycle in Arctic aerosol number and size. Our simulations suggest that coagulation scavenging of interstitial aerosols in clouds by aerosols that have activated to form cloud droplets strongly limits the total number of particles with diameters less than 200 nm throughout the year. We find that the minimum in total particle number in October can be explained by diminishing new-particle formation within the Arctic, limited transport of pollution from lower latitudes, and efficient wet removal. Our simulations indicate that the summertime-dominant Aitken mode is associated with efficient wet removal of accumulation-mode aerosols, which limits the condensation sink for condensable vapours. This in turn promotes new-particle formation and growth. The dominant accumulation mode during spring is associated with build up of transported pollution from outside the Arctic coupled with less-efficient wet-removal processes at colder temperatures. We recommend further attention to the key processes of new-particle formation, interstitial coagulation, and wet removal and their delicate interactions and balance in size-resolved aerosol simulations of the Arctic to reduce uncertainties in estimates of aerosol radiative effects on the Arctic climate.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy