SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Døssing Arne) "

Sökning: WFRF:(Døssing Arne)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Døssing, Arne, et al. (författare)
  • New aero-gravity results from the Arctic : Linking the latest Cretaceous-early Cenozoic plate kinematics of the North Atlantic and Arctic Ocean
  • 2013
  • Ingår i: Geochemistry Geophysics Geosystems. - : American Geophysical Union (AGU). - 1525-2027. ; 14:10, s. 4044-4065
  • Tidskriftsartikel (refereegranskat)abstract
    • The tectonic history of the Arctic Ocean remains poorly resolved and highly controversial. Details regarding break up of the Lomonosov Ridge from the Barents-Kara shelf margins and the establishment of seafloor spreading in the Cenozoic Eurasia Basin are unresolved. Significantly, the plate tectonic evolution of the Mesozoic Amerasia Basin is essentially unknown. The Arctic Ocean north of Greenland is at a critical juncture that formed at the locus of a Mesozoic three-plate setting between the Lomonosov Ridge, Greenland, and North America. In addition, the area is close to the European plate, resulting in complicated interactions between all these areas that are difficult to resolve. In 2009, the 550,000 km2 LOMGRAV aero-geophysical survey produced the first collocated gravity and magnetic measurements over the area, significantly increasing the data coverage. We present an interpretation of a new free-air gravity compilation, which reveals a regionally consistent structural grain across the Lomonosov Ridge, the Ellesmere and Lincoln Sea shelves, and the Alpha Ridge. We interpret the grain as evidence of latest Cretaceous (∼80 Ma) regional extension in response to the northward propagation of Atlantic and Labrador Sea opening into the Arctic, west of Greenland. This interpretation is consistent with coincident alkaline volcanic activity evident in the borderlands of the Lincoln Sea. We further suggest that Eurekan crustal shortening contributed to the formation of the distinct Lomonosov Ridge plateau against an important fault zone north of Greenland. Our results provide new constraints for Cretaceous-Cenozoic plate reconstructions of the Arctic. Key Points Presentation of the largest aero-gravity survey acquired over the Arctic Ocean Plate tectonic link between Atlantic and Arctic spreading west of Greenland New plate reconstruction models are presented for the area north of Greenland
  •  
2.
  • Døssing, Arne, et al. (författare)
  • A High-Speed, Light-Weight Scalar Magnetometer Bird for km Scale UAV Magnetic Surveying : On Sensor Choice, Bird Design, and Quality of Output Data
  • 2021
  • Ingår i: Remote Sensing. - : MDPI. - 2072-4292. ; 13:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Magnetic surveying is a widely used and cost-efficient remote sensing method for the detection of subsurface structures at all scales. Traditionally, magnetic surveying has been conducted as ground or airborne surveys, which are cheap and provide large-scale consistent data coverage, respectively. However, ground surveys are often incomplete and slow, whereas airborne surveys suffer from being inflexible, expensive and characterized by a reduced signal-to-noise ratio, due to increased sensor-to-source distance. With the rise of reliable and affordable survey-grade Unmanned Aerial Vehicles (UAVs), and the developments of light-weight magnetometers, the shortcomings of traditional magnetic surveying systems may be bypassed by a carefully designed UAV-borne magnetometer system. Here, we present a study on the development and testing of a light-weight scalar field UAV-integrated magnetometer bird system (the CMAGTRES-S100). The idea behind the CMAGTRES-S100 is the need for a high-speed and flexible system that is easily transported in the field without a car, deployable in most terrain and weather conditions, and provides high-quality scalar data in an operationally efficient manner and at ranges comparable to sub-regional scale helicopter-borne magnetic surveys. We discuss various steps in the development, including (i) choice of sensor based on sensor specifications and sensor stability tests, (ii) design considerations of the bird, (iii) operational efficiency and flexibility and (iv) output data quality. The current CMAGTRES-S100 system weighs ∼5.9 kg (including the UAV) and has an optimal surveying speed of 50 km/h. The system was tested along a complex coastal setting in Brittany, France, targeting mafic dykes and fault contacts with magnetite infill and magnetite nuggets (skarns). A 2.0 × 0.3 km area was mapped with a 10 m line-spacing by four sub-surveys (due to regulatory restrictions). The sub-surveys were completed in 3.5 h, including >2 h for remobilisation and the safety clearance of the area. A noise-level of ±0.02 nT was obtained and several of the key geological structures were mapped by the system.
  •  
3.
  • Døssing, Arne, et al. (författare)
  • On the origin of the Amerasia Basin and the High Arctic Large Igneous Province-Results of new aeromagnetic data
  • 2013
  • Ingår i: Earth and Planetary Science Letters. - : Elsevier BV. - 0012-821X .- 1385-013X. ; 363, s. 219-230
  • Tidskriftsartikel (refereegranskat)abstract
    • The history of the 2.5 million km2 Amerasia Basin (sensu lato) is in many ways the least known in the global tectonic system. Radically different hypotheses proposed to explain its origin are supported only by inconclusive and/or indirect observations and several outstanding issues on the origin of the Basin remain unaddressed. The difficulty lies in the geodynamic evolution and signature of the Basin being overprinted by excess volcanism of the Alpha-Mendeleev Ridge complex, part of the High Arctic Large Igneous Province (HALIP) and one of the largest (>1 million km2) and most intense magmatic and magnetic complexes on Earth. Here, we present the results of a 550,000km2 aerogeophysical survey over the poorly explored Lomonosov Ridge (near Greenland) and adjoining Amerasia and Eurasia Basins that provides the first direct evidence for consistent linear magnetic features between the Alpha and Lomonosov Ridges, enabling the tectonic origin of both the Amerasia Basin and the HALIP to be constrained. A landward Lower Cretaceous ( ~ 138 - 125(120) Ma) giant dyke swarm (minimum 350×800km2) and tentative oceanward Barremian (or alternatively lower Valanginian-Barremian) seafloor spreading anomalies are revealed. Prior to Cenozoic opening of the Eurasia Basin the giant dyke swarm stretched from Franz Josef Land to the southern Alpha Ridge and possibly further to Queen Elisabeth Islands, Canada. The swarm points towards a 250-km-wide donut-shaped anomaly on the southern Alpha Ridge, which we propose was the centre of the HALIP mantle plume, suggesting that pronounced intrusive activity, associated with an Alpha Ridge mantle plume, took place well before the Late Cretaceous Superchron and caused continental breakup in the northern Amerasia Basin. Our results imply that at least the southern Alpha Ridge as well as large parts of the area between the Lomonosov and southern Alpha Ridges are highly attenuated continental crust formed by poly-phase breakup with LIP volcanic addition. Significantly, our results are consistent with an early ( ~ pre-120 Ma) overall continental scale rotational opening of the Amerasia Basin in which the Eurasian continental margin is rifted from the Canadian-southern Alpha Ridge margin about one or more poles in the Mackenzie Delta (Alaska). The findings provide a key to resolving Arctic plate reconstructions and LIPs in the Mesozoic.
  •  
4.
  • Døssing, Arne, et al. (författare)
  • UAV-Towed scalar magnetic gradiometry: A case study in relation to iron oxide copper-gold mineralization, Nautanen (Arctic Sweden)
  • 2023
  • Ingår i: The Leading Edge. - : Society of Exploration Geophysicists. - 1070-485X .- 1938-3789. ; 42:2, s. 103-111
  • Tidskriftsartikel (refereegranskat)abstract
    • Scalar magnetic surveying using unmanned aerial vehicle (UAV) platforms is slowly gaining momentum within geophysical applications. So far, only a handful of studies have dealt with UAV-Towed scalar field measurements, while even fewer have considered towed scalar difference measurements (or gradients). In this paper, we demonstrate the possibilities and benefits of deploying precisely positioned noise-minimized UAV-Towed scalar transverse horizontal difference (THD) measurements for mineral exploration purposes. UAV-Towed gradiometry bird data are presented from the Nautanen area in northern Sweden and compared with ground magnetic surveys. This area is known for its iron oxide copper-gold mineralizations. The UAV survey spans a total area of 2.5 km2. It was covered using an average line spacing of 30 m and a constant flight altitude above ground level of 30 m. High-quality scalar total-field and THD data were collected with a dynamic noise level of the raw scalar data of about ±0.05 nT. Comparison with the ground magnetic data shows a strong correlation between magnetic anomaly lows and highs across the survey areas. A map with new structural information is presented based on subtle magnetic structures identified in discrete derivatives of the total magnetic intensity anomaly and THD data. Such systems may replace high-quality heliborne systems and reduce costs of the geophysical exploration phase. However, mapping with UAV-Towed systems is not straightforward. With typical UAV flight speeds of only 10-12 m/s, the wind often disturbs the 3D attitude of the bird during flights. Hence, advanced processing is required to obtain the intended gradients. Similar challenges are less important in surveying, where the survey speed often greatly exceeds the wind speed.
  •  
5.
  • Martelet, Guillaume, et al. (författare)
  • Airborne/UAV Multisensor Surveys Enhance the Geological Mapping and 3D Model of a Pseudo-Skarn Deposit in Ploumanac’h, French Brittany
  • 2021
  • Ingår i: Minerals. - : MDPI. - 2075-163X. ; 11:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Taking advantage of a multi-sensor (multispectral and magnetic) drone survey, we address the detailed geological mapping and modeling of a mineralization in its geological environment. We stress that these high-resolution data allow us to bridge the gap between field observations and a regional aeromagnetic survey. On the one hand, the combination of multispectral imagery with field geological observations enhances detailed geological mapping. On the other hand, the combination of field magnetic susceptibility measurement and their use in detailed to regional magnetic modeling, constrained respectively by UAV-borne and airborne magnetic surveys, allows deriving a model of the mineralization consistent across the scales. This is demonstrated in a case study in a complex polyphased magmatic-metamorphic environment on the coast of French Brittany. The target area hosts a pseudo-skarn mineralization, exhibiting an outstanding magnetic anomaly. The combination of remotely sensed and field data allows deriving a realistic conceptual and geometrical model of the magnetic mineralization in its geological environment, tightly constrained by field observations and measurements.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy