SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Da Ros Francesco) "

Sökning: WFRF:(Da Ros Francesco)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cristofori, Valentina, et al. (författare)
  • 25-Gb/s transmission over 2.5-km SSMF by silicon MRR enhanced 1.55-μm III-V/SOI DML
  • 2017
  • Ingår i: 30th Annual Conference of the IEEE Photonics Society, IPC 2017. - : Institute of Electrical and Electronics Engineers Inc.. - 9781509065783 ; , s. 357-360
  • Konferensbidrag (refereegranskat)abstract
    • The use of a micro-ring resonator (MRR) to enhance the modulation extinction ratio and dispersion tolerance of a directly modulated laser (DML) is experimentally investigated with a bit rate of 25 Gb/s as proposed for the next generation data center communications. The investigated system combines a 11-GHz 1.55-m directly modulated hybrid III-V/SOI DFB laser realized by bonding III-V materials (InGaAlAs) on a silicon-on-insulator (SOI) wafer and a silicon MRR also fabricated on SOI. Such a transmitter enables error-free transmission (BER< 10 -9 )at 25 Gb/s data rate over 2.5-km SSMF without dispersion compensation nor forward error correction (FEC). As both laser and MRR are fabricated on the SOI platform, they could be combined into a single device with enhanced performance, thus providing a cost-effective transmitter for short reach applications.
  •  
2.
  • Jia, Shi, et al. (författare)
  • 0.4 THz Photonic-Wireless Link with 106 Gbit/s Single Channel Bitrate
  • 2018
  • Ingår i: Journal of Lightwave Technology. - : IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC. - 0733-8724 .- 1558-2213. ; 36:2, s. 610-616
  • Tidskriftsartikel (refereegranskat)abstract
    • To accommodate the demand of exponentially increased global wireless data traffic, the prospective data rates for wireless communication in the market place will soon reach 100 Gbit/s and beyond. In the lab environment, wireless transmission throughput has been elevated to the level of over 100 Gbit/s attributed to the development of photonic-assisted millimeter wave (MMW) and THz technologies. However, most of recent demonstrations with over 100 Gbit/s data rates are based on spatial or frequency division multiplexing techniques, resulting in increased system's complexity and energy consumption. Here, we experimentally demonstrate a single channel 0.4 THz photonic-wireless link achieving a net data rate of beyond 100 Gbit/s by using a single pair of THz emitter and receiver, without employing any spatial/frequency division multiplexing techniques. The high throughput up to 106 Gbit/s within a single THz channel is enabled by combining spectrally efficient modulation format, ultra-broadband THz transceiver and advanced digital signal processing (DSP) routine. Besides that, our demonstration from system-wide implementation viewpoint also features high transmission stability, and hence shows its great potential to not only decrease the system's complexity, but also meet the requirements of prospective data rates for bandwidth-hungry short-range wireless applications.
  •  
3.
  • Navarro, Jaime Rodrigo, et al. (författare)
  • Two-Stage n-PSK Partitioning Carrier Phase Recovery Scheme for Circular mQAM Coherent Optical Systems
  • 2016
  • Ingår i: Photonics. - : MDPI AG. - 2304-6732. ; 3:2
  • Tidskriftsartikel (refereegranskat)abstract
    • A novel two-stage n-PSK partitioning carrier phase recovery (CPR) scheme for circular multilevel quadrature amplitude modulation (C-mQAM) constellations is presented. The first stage of the algorithm provides an initial rough estimation of the received constellation, which is utilized in the second stage for CPR. The performance of the proposed algorithm is studied through extensive simulations at the forward error correction bit error rate targets of 3.8 x 10(-3) and 1 x 10(-2) and is compared with different CPR algorithms. A significant improvement in the combined linewidth symbol duration product (Delta vT(s)) tolerance is achieved compared to the single-stage n-PSK partitioning scheme. Superior performance in the Delta vT(s) tolerance compared to the blind phase search algorithm is also reported. The relative improvements with respect to other CPR schemes are also validated experimentally for a 28-Gbaud C-16QAM back-to-back transmission system. The computational complexity of the proposed CPR scheme is studied, and reduction factors of 24.5 broken vertical bar 30.1 and 59.1 broken vertical bar 63.3 are achieved for C-16QAM and C-64QAM, respectively, compared to single-stage BPS in the form of multipliers broken vertical bar adders.
  •  
4.
  • Ozolins, Oskars, et al. (författare)
  • Optical spectral reshaping for directly modulated 4-pulse amplitude modulation signals
  • 2017
  • Ingår i: Transparent Optical Networks (ICTON), 2017 19th International Conference on. - : Institute of Electrical and Electronics Engineers (IEEE). - 9781538608609 ; , s. 1-1
  • Konferensbidrag (refereegranskat)abstract
    • The tremendous traffic growth in intra/inter-datacenters requires low-cost high-speed integrated solutions [1]. To enable a significantly reduced footprint directly modulated lasers (DMLs) have been proposed instead of large external modulators. However, it is challenging to use DMLs due to their low dispersion tolerance and limited achievable extinction ratio (ER). A promising solution to this problem is optical spectral reshaping (OSR) since it is possible to increase the dispersion tolerance as well as to enhance the achievable ER for both on-of-keying [2] and 4-pulse amplitude modulation (PAM) [3] signals. However, moving to 4-PAM,many of the impressive demonstrations reported so far rely heavily on off-line digital signal processing (DSP), which increases latency, power consumption and cost. In this talk, we report on (i) a detailed numerical analysis on the complex transfer function of the optical filter for optical spectral reshaping in case of pulse amplitude modulation and(ii) an experimental demonstration of real-time dispersion-uncompensated transmission of 10-GBd and 14-GBd 4-PAM signals up to 10- and 26-km SSMF. This is achieved by combining a commercial 10-Gb/s DML with optical spectral shaping, thus removing the need for any complex off-line DSP and improving dispersion tolerance. These achievements are enabled by OSR based on a passive microring resonator fabricated on the SOI platform [4]. Significant improvement in receiver sensitivities was observed for both a 10-GBd signal after 10-km SSMF transmission and 14-GBd with no penalty after 26-km SSMF transmission.
  •  
5.
  • Pang, Xiaodan, Dr., et al. (författare)
  • Single Channel 106 Gbit/s 16QAM Wireless Transmission in the 0.4 THz Band
  • 2017
  • Ingår i: 2017 Optical Fiber Communications Conference and Exhibition, OFC 2017 - Proceedings. - : Institute of Electrical and Electronics Engineers Inc.. - 9781943580231
  • Konferensbidrag (refereegranskat)abstract
    • We experimentally demonstrate a single channel 32-GBd 16QAM THz wireless link operating in the 0.4 THz band. Post-FEC net data rate of 106 Gbit/s is successfully achieved without any spatial/freauencv multiplexing.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy