SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dabrosin Nina) "

Sökning: WFRF:(Dabrosin Nina)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dabrosin, Nina, et al. (författare)
  • Postmenopausal Dense Breasts Maintain Premenopausal Levels of GH and Insulin-like Growth Factor Binding Proteins in Vivo
  • 2020
  • Ingår i: Journal of Clinical Endocrinology and Metabolism. - : ENDOCRINE SOC. - 0021-972X .- 1945-7197. ; 105:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Context: Dense breast tissue is associated with 4 to 6 times higher risk of breast cancer by poorly understood mechanisms. No preventive therapy for this high-risk group is available. After menopause, breast density decreases due to involution of the mammary gland. In dense breast tissue, this process is haltered by undetermined biological actions. Growth hormone (GH) and insulin-like binding proteins (IGFBPs) play major roles in normal mammary gland development, but their roles in maintaining breast density are unknown. Objective: To reveal in vivo levels of GH, IGFBPs, and other pro-tumorigenic proteins in the extracellular microenvironment in breast cancer, in normal breast tissue with various breast density in postmenopausal women, and premenopausal breasts. We also sought to determine possible correlations between these determinants. Setting and Design: Microdialysis was used to collect extracellular in vivo proteins intratumorally from breast cancers before surgery and from normal human breast tissue from premenopausal women and postmenopausal women with mammographic dense or nondense breasts. Results: Estrogen receptor positive breast cancers exhibited increased extracellular GH (P <.01). Dense breasts of postmenopausal women exhibited similar levels of GH as premenopausal breasts and significantly higher levels than in nondense breasts (P <.001). Similar results were found for IGFBP-1, -2, -3, and -7 (P <.01) and for IGFBP-6 (P <.05). Strong positive correlations were revealed between GH and IGFBPs and pro-tumorigenic matrix metalloproteinases, urokinase-type plasminogen activator, Interleukin 6, Interleukin 8, and vascular endothelial growth factor in normal breast tissue. Conclusions: GH pathways may be targetable for cancer prevention therapeutics in postmenopausal women with dense breast tissue.
  •  
2.
  • Abrahamsson, Annelie, et al. (författare)
  • Increased matrix stiffness enhances pro-tumorigenic traits in a physiologically relevant breast tissue- monocyte 3D model
  • 2024
  • Ingår i: Acta Biomaterialia. - : ELSEVIER SCI LTD. - 1742-7061 .- 1878-7568. ; 178, s. 160-169
  • Tidskriftsartikel (refereegranskat)abstract
    • High mammographic density, associated with increased tissue stiffness, is a strong risk factor for breast cancer per se . In postmenopausal women there is no differences in the occurrence of ductal carcinoma in situ (DCIS) depending on breast density. Preliminary data suggest that dense breast tissue is associated with a pro -inflammatory microenvironment including infiltrating monocytes. However, the underlying mechanism(s) remains largely unknown. A major roadblock to understanding this risk factor is the lack of relevant in vitro models. A biologically relevant 3D model with tunable stiffness was developed by cross -linking hyaluronic acid. Breast cancer cells were cultured with and without freshly isolated human monocytes. In a unique clinical setting, extracellular proteins were sampled using microdialysis in situ from women with various breast densities. We show that tissue stiffness resembling high mammographic density increases the attachment of monocytes to the cancer cells, increase the expression of adhesion molecules and epithelia-mesenchymal-transition proteins in estrogen receptor (ER) positive breast cancer. Increased tissue stiffness results in increased secretion of similar pro-tumorigenic proteins as those found in human dense breast tissue including inflammatory cytokines, proteases, and growth factors. ER negative breast cancer cells were mostly unaffected suggesting that diverse cancer cell phenotypes may respond differently to tissue stiffness. We introduce a biological relevant model with tunable stiffness that resembles the densities found in normal breast tissue in women. The model will be key for further mechanistic studies. Additionally, our data revealed several pro-tumorigenic pathways that may be exploited for prevention and therapy against breast cancer.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy