SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Daewel Ute) "

Sökning: WFRF:(Daewel Ute)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bieser, Johannes, et al. (författare)
  • The 3D biogeochemical marine mercury cycling model MERCY v2.0 – linking atmospheric Hg to methylmercury in fish
  • 2023
  • Ingår i: Geoscientific Model Development. - 1991-959X .- 1991-9603. ; 16:9, s. 2649-2688
  • Tidskriftsartikel (refereegranskat)abstract
    • Mercury (Hg) is a pollutant of global concern. Due to anthropogenic emissions, the atmospheric and surface ocean Hg burden has increased substantially since preindustrial times. Hg emitted into the atmosphere gets transported on a global scale and ultimately reaches the oceans. There it is transformed into highly toxic methylmercury (MeHg) that effectively accumulates in the food web. The international community has recognized this serious threat to human health and in 2017 regulated Hg use and emissions under the UN Minamata Convention on Mercury. Currently, the first effectiveness evaluation of the Minamata Convention is being prepared, and, in addition to observations, models play a major role in understanding environmental Hg pathways and in predicting the impact of policy decisions and external drivers (e.g., climate, emission, and land-use change) on Hg pollution. Yet, the available model capabilities are mainly limited to atmospheric models covering the Hg cycle from emission to deposition. With the presented model MERCY v2.0 we want to contribute to the currently ongoing effort to improve our understanding of Hg and MeHg transport, transformation, and bioaccumulation in the marine environment with the ultimate goal of linking anthropogenic Hg releases to MeHg in seafood.Here, we present the equations and parameters implemented in the MERCY model and evaluate the model performance for two European shelf seas, the North and Baltic seas. With the model evaluation, we want to establish a set of general quality criteria that can be used for evaluation of marine Hg models. The evaluation is based on statistical criteria developed for the performance evaluation of atmospheric chemistry transport models. We show that the MERCY model can reproduce observed average concentrations of individual Hg species in water (normalized mean bias: HgT 17 %, Hg0 2 %, MeHg −28 %) in the two regions mentioned above. Moreover, it is able to reproduce the observed seasonality and spatial patterns. We find that the model error for HgT(aq) is mainly driven by the limitations of the physical model setup in the coastal zone and the availability of data on Hg loads in major rivers. In addition, the model error in calculating vertical mixing and stratification contributes to the total HgT model error. For the vertical transport we find that the widely used particle partitioning coefficient for organic matter of log(kd)=5.4 is too low for the coastal systems. For Hg0 the model performance is at a level where further model improvements will be difficult to achieve. For MeHg, our understanding of the processes controlling methylation and demethylation is still quite limited. While the model can reproduce average MeHg concentrations, this lack of understanding hampers our ability to reproduce the observed value range. Finally, we evaluate Hg and MeHg concentrations in biota and show that modeled values are within the range of observed levels of accumulation in phytoplankton, zooplankton, and fish. The model performance demonstrates the feasibility of developing marine Hg models with similar predictive capability to established atmospheric chemistry transport models. Our findings also highlight important knowledge gaps in the dynamics controlling methylation and bioaccumulation that, if closed, could lead to important improvements of the model performance.
  •  
2.
  • Charrieau, Laurie, et al. (författare)
  • Rapid environmental responses to climate-induced hydrographic changes in the Baltic Sea entrance
  • 2019
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4189 .- 1726-4170. ; 16, s. 3835-3852
  • Tidskriftsartikel (refereegranskat)abstract
    • The Öresund (the Sound), which is a part of the Danish straits, is linking the marine North Sea and the brackish Baltic Sea. It is a transition zone where ecosystems are subjected to large gradients in terms of salinity, temperature, carbonate chemistry, and dissolved oxygen concentration. In addition to the highly variable environmental conditions, the area is responding to anthropogenic disturbances in e.g. nutrient loading, temperature, and pH. We have reconstructed environmental changes in the Öresund during the last c. 200 years, and especially dissolved oxygen concentration, salinity, organic matter content, and pollution levels, using benthic foraminifera and sediment geochemistry. Five zones with characteristic foraminiferal assemblages were identified, each reflecting the environmental conditions for respective period. The largest changes occurred ~ 1950, when the foraminiferal assemblage shifted from a low diversity fauna, dominated by the species Stainforthia fusiformis to higher diversity and abundance, and dominance of the Elphidium group. Concurrently, the grain-size distribution shifted from clayey – to more sandy sediment. To explore the causes for the environmental changes, we used time-series of reconstructed wind conditions coupled with large-scale climate variations as recorded by the NAO index, as well as the ECOSMO II model of currents in the Öresund area. The results indicate increased changes in the water circulation towards stronger currents in the area since the 1950's. The foraminiferal fauna responded quickly (< 10 years) to the environmental changes. Notably, when the wind conditions, and thereby the current system, returned in the 1980's to the previous pattern, the foraminiferal species assemblage did not rebound, but the foraminiferal faunas rather displayed a new equilibrium state.
  •  
3.
  • Daewel, Ute, et al. (författare)
  • Predation control of zooplankton dynamics : a review of observations and models
  • 2014
  • Ingår i: ICES Journal of Marine Science. - : Oxford University Press (OUP). - 1054-3139 .- 1095-9289. ; 71:2, s. 254-271
  • Forskningsöversikt (refereegranskat)abstract
    • We performed a literature review to examine to what degree the zooplankton dynamics in different regional marine ecosystems across the Atlantic Ocean is driven by predation mortality and how the latter is addressed in available modelling approaches. In general, we found that predation on zooplankton plays an important role in all the six considered ecosystems, but the impacts are differently strong and occur at different spatial and temporal scales. In ecosystems with extreme environmental conditions (e.g. low temperature, ice cover, large seasonal amplitudes) and low species diversity, the overall impact of top-down processes on zooplankton dynamics is stronger than for ecosystems having moderate environmental conditions and high species diversity. In those ecosystems, predation mortality was found to structure the zooplankton mainly on local spatial and seasonal time scales. Modelling methods used to parameterize zooplankton mortality range from simplified approaches with fixed mortality rates to complex coupled multispecies models. The applicability of a specific method depends on both the observed state of the ecosystem and the spatial and temporal scales considered. Modelling constraints such as parameter uncertainties and computational costs need to be balanced with the ecosystem-specific demand for a consistent, spatial-temporal dynamic implementation of predation mortality on the zooplankton compartment.
  •  
4.
  • Friedland, René, et al. (författare)
  • Effects of Nutrient Management Scenarios on Marine Eutrophication Indicators : A Pan-European, Multi-Model Assessment in Support of the Marine Strategy Framework Directive
  • 2021
  • Ingår i: Frontiers in Marine Science. - : Frontiers Media SA. - 2296-7745. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • A novel pan-European marine model ensemble was established, covering nearly all seas under the regulation of the Marine Strategy Framework Directive (MSFD), with the aim of providing a consistent assessment of the potential impacts of riverine nutrient reduction scenarios on marine eutrophication indicators. For each sea region, up to five coupled biogeochemical models from institutes all over Europe were brought together for the first time. All model systems followed a harmonised scenario approach and ran two simulations, which varied only in the riverine nutrient inputs. The load reductions were evaluated with the catchment model GREEN and represented the impacts due to improved management of agriculture and wastewater treatment in all European river systems. The model ensemble, comprising 15 members, was used to assess changes to the core eutrophication indicators as defined within MSFD Descriptor 5. In nearly all marine regions, riverine load reductions led to reduced nutrient concentrations in the marine environment. However, regionally the nutrient input reductions led to an increase in the non-limiting nutrient in the water, especially in the case of phosphate concentrations in the Black Sea. Further core eutrophication indicators, such as chlorophyll-a, bottom oxygen and the Trophic Index TRIX, improved nearly everywhere, but the changes were less pronounced than for the inorganic nutrients. The model ensemble displayed strong consistency and robustness, as most if not all models indicated improvements in the same areas. There were substantial differences between the individual seas in the speed of response to the reduced nutrient loads. In the North Sea ensemble, a stable plateau was reached after only three years, while the simulation period of eight years was too short to obtain steady model results in the Baltic Sea. The ensemble exercise confirmed the importance of improved management of agriculture and wastewater treatments in the river catchments to reduce marine eutrophication. Several shortcomings were identified, the outcome of different approaches to compute the mean change was estimated and potential improvements are discussed to enhance policy support. Applying a model ensemble enabled us to obtain highly robust and consistent model results, substantially decreasing uncertainties in the scenario outcome. ABSTRACT A novel pan-European marine model ensemble was established, covering nearly all seas under the regulation of the Marine Strategy Framework Directive (MSFD), with the aim of providing a consistent assessment of the potential impacts of riverine nutrient reduction scenarios on marine eutrophication indicators. For each sea region, up to five coupled biogeochemical models from institutes all over Europe were brought together for the first time. All model systems followed a harmonised scenario approach and ran two simulations, which varied only in the riverine nutrient inputs. The load reductions were evaluated with the catchment model GREEN and represented the impacts due to improved management of agriculture and wastewater treatment in all European river
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy