SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dagyte Vilgaile) "

Sökning: WFRF:(Dagyte Vilgaile)

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Anttu, Nicklas, et al. (författare)
  • Absorption and transmission of light in III-V nanowire arrays for tandem solar cell applications
  • 2017
  • Ingår i: Nanotechnology. - : IOP Publishing. - 0957-4484 .- 1361-6528. ; 28:20
  • Tidskriftsartikel (refereegranskat)abstract
    • III-V semiconductor nanowires are a platform for next-generation photovoltaics. An interesting research direction is to embed a nanowire array in a transparent polymer, either to act as a stand-alone flexible solar cell, or to be stacked on top of a conventional Si bottom cell to create a tandem structure. To optimize the tandem cell performance, high energy photons should be absorbed in the nanowires whereas low energy photons should be transmitted to and absorbed in the Si cell. Here, through optical measurements on 1.95 eV bandgap GaInP nanowire arrays embedded in a polymer membrane, we identify two mechanisms that could be detrimental for the performance of the tandem cell. First, the Au particles used in the nanowire synthesis can absorb >50% of the low-energy photons, leading to a <40% transmittance, even though the Au particles cover <15% of the surface area. The removal of the Au particles can recover the transmission of low energy photons to >80%. Second, after the removal of the Au particles, a 40% reflectance peak shows up due to resonant back-scattering of light from in-plane waveguide modes. To avoid the excitation of these optical modes in the nanowire array, we propose to limit the pitch of the nanowire array.
  •  
2.
  • Chayanun, Lert, et al. (författare)
  • Spectrally resolved x-ray beam induced current in a single InGaP nanowire
  • 2018
  • Ingår i: Nanotechnology. - : IOP Publishing. - 0957-4484 .- 1361-6528. ; 29:45
  • Tidskriftsartikel (refereegranskat)abstract
    • We demonstrate x-ray absorption fine structure spectroscopy (XAFS) detected by x-ray beam induced current (XBIC) in single n + -i-n + doped nanowire devices. Spatial scans with the 65 nm diameter beam show a peak of the XBIC signal in the middle segment of the nanowire. The XBIC and the x-ray fluorescence signals were detected simultaneously as a function of the excitation energy near the Ga K absorption edge at 10.37 keV. The spectra show similar oscillations around the edge, which shows that the XBIC is limited by the primary absorption. Our results reveal the feasibility of the XBIC detection mode for the XAFS investigation in nanostructured devices.
  •  
3.
  • Dagyte, Vilgaile (författare)
  • Growth and optical properties of III-V semiconductor nanowires: : Studies relevant for solar cells
  • 2018
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis deals with epitaxial growth and optical properties of semiconductor nanowires with implications and insights about materials for solar cells. The chapters leading up to the papers give a broader background and an introduction to the field and include nanowires and their synthesis, semiconductor properties, solar cell operational principles, light interaction with a nanowire array, and optical characterization of such arrays.The nanowires were grown from gold seed particles using metal organic vapor phase epitaxy. Growth of ternary GaInP nanowires has been developed with a triethylgallium precursor that has not been commonly used before for this material structure in nanowires. We have achieved high yield and wide composition range nanowires with high control, which will be a crucial element for development of tandem solar cells where a high band-gap GaInP nanowire array could be the top cell.In terms of optical properties, lifetimes and carrier dynamics are important parameters for optoelectronic devices, including solar cells. We have investigated surface passivation of nanowires by capping GaAs nanowires with in situ grown shells, at the same time evaluating the possibility of measuring time-resolved photoluminescence signal of as-grown nanowires, even when the substrate is made of the same material. We have identified that depending on doping levels in the substrate and the nanowires, excitation wavelength can be chosen to separate nanowire signal from the substrate signal. Moreover, we have preliminary proposed a simple way to extract doping, which needs to be tested more extensively in the future. Such measurements of as-grown arrays could provide a fast and completely non-destructive characterization method for solar cell materials and allow further processing of the devices.Further, we have investigated reflectance and transmittance of flexible nanowire arrays embedded in a transparent polymer. Such flexible membranes could be interesting as flexible solar cells on their own, or could be incorporated on top of a lower band-gap material, for example silicon, to create a tandem solar cell. We have identified two potential issues with such structures. First of all, gold can absorb a significant fraction of the incoming light. The gold particles can be etched away, which recovers transmittance for the long wavelengths. However, a resonant reflectance peak is then observed. Through our work, we have identified that in-plane array modes arise in nanowire arrays embedded in a polymer that lead to resonant reflectance or absorptance in weakly absorbing materials. Such effect would be detrimental for transmitting long wavelengths to the bottom cell. Thus, we have investigated how these resonances depend on geometry in order to give guidelines for controlling this effect.
  •  
4.
  • Dagyte, Vilgaile, et al. (författare)
  • Growth kinetics of GaxIn(1−x)P nanowires using triethylgallium as Ga precursor
  • 2018
  • Ingår i: Nanotechnology. - : IOP Publishing. - 0957-4484 .- 1361-6528. ; 29:39
  • Tidskriftsartikel (refereegranskat)abstract
    • GaxIn(1−x)P nanowire arrays are promising for various optoelectronic applications with a tunable band-gap over a wide range. In particular, they are well suited as the top cell in tandem junction solar cell devices. So far, most GaxIn(1−x)P nanowires have been synthesized by the use of trimethylgallium (TMGa). However, particle assisted nanowire growth in metal organic vapor phase epitaxy is typically carried out at relatively low temperatures, where TMGa is not fully pyrolysed. In this work, we developed the growth of GaxIn(1−x)P nanowires using triethylgallium (TEGa) as the Ga precursor, which reduced Ga precursor consumption by about five times compared to TMGa due to the lower homogeneous pyrolysis temperature of TEGa. The versatility of TEGa is shown by synthesis of high yield GaxIn(1−x)P nanowire arrays, with a material composition tunable by the group III input flows, as verified by x-ray diffraction measurements and photoluminescence characterization. The growth dynamics of GaxIn(1−x)P nanowires was assessed by varying the input growth precursor molar fractions and growth temperature, using hydrogen-chloride as in situ etchant. We observed a complex interplay between the precursors. First, trimethylindium (TMIn) inhibits Ga incorporation into the nanowires, resulting in higher In composition in the grown nanowires than in the vapor. Second, the growth rate increases with temperature, indicating a kinetically limited growth, which from nanowire effective binary volume growth rates of InP and GaP can be attributed to the synthesis of GaP in GaxIn(1−x)P. We observed that phosphine has a strong effect on the nanowire growth rate with behavior expected for a unimolecular Langmuir–Hinshelwood mechanism of pyrolysis on a catalytic surface. However, growth rates increase strongly with both TEGa and TMIn precursors as well, indicating the complexity of vapor–liquid–solid growth for ternary materials. One precursor can affect the decomposition of another, and each precursor can affect the wetting properties and catalytic activity of the metal particle.
  •  
5.
  • Dagytė, Vilgailė, et al. (författare)
  • Modal analysis of resonant and non-resonant optical response in semiconductor nanowire arrays
  • 2019
  • Ingår i: Nanotechnology. - : IOP Publishing. - 0957-4484 .- 1361-6528. ; 30:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Nanowire array solar cells have reached efficiencies where it becomes feasible to talk about creating tandem solar cells in order to achieve even higher efficiencies. An example of such a tandem solar cell could be a nanowire array embedded in a membrane and integrated on top of a Si bottom cell. Such a system, however, requires understanding and control of its interaction with light, especially to make sure that the low energy photons are transmitted to the bottom cell. The dependence of the optical response of a nanowire array on the nanowire length, diameter, array pitch, materials surrounding the nanowires, and absorption coefficient of the nanowire material is very strong and possibly resonant, indicating the complexity of the optical response. In this work, we use an eigenmode-based analysis to reveal underlying physics that gives rise to observed resonant and non-resonant behavior. First, we show that an effective refractive index can be defined at long wavelengths, where only a single mode propagates. Second, we analyze the origin of the resonant reflection when the next optical mode becomes propagating and can be 'trapped' in the array and interact with the fundamental mode. Additionally, we define two simple boundaries for the wavelength range of the resonant response: the resonances can only occur if there is more than 1 propagating mode in the array, and they disappear if the 1st diffracted order is propagating in the top or bottom material. Such resonance effects could be detrimental for tandem solar cells. We thus provide recommendations for tuning the geometry of the array and the nanowire materials in order to push the resonant regime to the absorbing regime of the nanowire, where absorption in the nanowires dampens the resonances. Finally, this work demonstrates the strength of an eigenmode-based analysis of the optical response of periodic nanostructures in terms of simplifying the analysis of a complex system.
  •  
6.
  • Dagyte, Vilgaile, et al. (författare)
  • Time-resolved photoluminescence characterization of GaAs nanowire arrays on native substrate
  • 2017
  • Ingår i: Nanotechnology. - : IOP Publishing. - 0957-4484 .- 1361-6528. ; 28:50
  • Tidskriftsartikel (refereegranskat)abstract
    • Time-resolved photoluminescence (TRPL) measurements of nanowires (NWs) are often carried out on broken-off NWs in order to avoid the ensemble effects as well as substrate contribution. However, the development of NW-array solar cells could benefit from non-destructive optical characterization to allow faster feedback and further device processing. With this work, we show that different NW array and substrate spectral behaviors with delay time and excitation power can be used to determine which part of the sample dominates the detected spectrum. Here, we evaluate TRPL characterization of dense periodic as-grown GaAs NW arrays on a p-type GaAs substrate, including a sample with uncapped GaAs NWs and several samples passivated with AlGaAs radial shell of varied composition and thickness. We observe a strong spectral overlap of substrate and NW signals and find that the NWs can absorb part of the substrate luminescence signal, thus resulting in a modified substrate signal. The level of absorption depends on the NW-array geometry, making a deconvolution of the NW signal very difficult. By studying TRPL of substrate-only and as-grown NWs at 770 and 400 nm excitation wavelengths, we find a difference in spectral behavior with delay time and excitation power that can be used to assess whether the signal is dominated by the NWs. We find that the NW signal dominates with 400 nm excitation wavelength, where we observe two different types of excitation power dependence for the NWs capped with high and low Al composition shells. Finally, from the excitation power dependence of the peak TRPL signal, we extract an estimate of background carrier concentration in the NWs.
  •  
7.
  • Haggren, Tuomas, et al. (författare)
  • InP nanowire p-type doping via Zinc indiffusion
  • 2016
  • Ingår i: Journal of Crystal Growth. - : Elsevier BV. - 0022-0248. ; 451, s. 18-26
  • Tidskriftsartikel (refereegranskat)abstract
    • We report an alternative pathway for p-type InP nanowire (NW) doping by diffusion of Zn species from the gas phase. The diffusion of Zn was performed in a MOVPE reactor at 350–500 °C for 5–20 min with either H2 environment or additional phosphorus in the atmosphere. In addition, Zn3P2 shells were studied as protective caps during post-diffusion annealing. This post-diffusion annealing was performed to outdiffuse and activate Zn in interstitial locations. The characterization methods included photoluminescence and single NW conductivity and carrier concentration measurements. The acquired carrier concentrations were in the order of >1017 cm−3 for NWs without post-annealing, and up to 1018 cm−3 for NWs annealed with the Zn3P2 shells. The diffused Zn caused redshift to the photoluminescence signal, and the degree of redshift depended on the diffusion process.
  •  
8.
  • Hammarberg, Susanna, et al. (författare)
  • Fast nanoscale imaging of strain in a multi-segment heterostructured nanowire with 2D Bragg ptychography
  • 2024
  • Ingår i: Journal of Applied Crystallography. - 0021-8898. ; 57, s. 60-70
  • Tidskriftsartikel (refereegranskat)abstract
    • Developing semiconductor devices requires a fast and reliable source of strain information with high spatial resolution and strain sensitivity. This work investigates the strain in an axially heterostructured 180 nm-diameter GaInP nanowire with InP segments of varying lengths down to 9 nm, simultaneously probing both materials. Scanning X-ray diffraction (XRD) is compared with Bragg projection ptychography (BPP), a fast single-projection method. BPP offers a sufficient spatial resolution to reveal fine details within the largest segments, unlike scanning XRD. The spatial resolution affects the quantitative accuracy of the strain maps, where BPP shows much-improved agreement with an elastic 3D finite element model compared with scanning XRD. The sensitivity of BPP to small deviations from the Bragg condition is systematically investigated. The experimental confirmation of the model suggests that the large lattice mismatch of 1.52% is accommodated without defects.
  •  
9.
  • Hammarberg, Susanna, et al. (författare)
  • High resolution strain mapping of a single axially heterostructured nanowire using scanning X-ray diffraction
  • 2020
  • Ingår i: Nano Research. - : Springer Science and Business Media LLC. - 1998-0124 .- 1998-0000. ; 13:9, s. 2460-2468
  • Tidskriftsartikel (refereegranskat)abstract
    • Axially heterostructured nanowires are a promising platform for next generation electronic and optoelectronic devices. Reports based on theoretical modeling have predicted more complex strain distributions and increased critical layer thicknesses than in thin films, due to lateral strain relaxation at the surface, but the understanding of the growth and strain distributions in these complex structures is hampered by the lack of high-resolution characterization techniques. Here, we demonstrate strain mapping of an axially segmented GaInP-InP 190 nm diameter nanowire heterostructure using scanning X-ray diffraction. We systematically investigate the strain distribution and lattice tilt in three different segment lengths from 45 to 170 nm, obtaining strain maps with about 10−4 relative strain sensitivity. The experiments were performed using the 90 nm diameter nanofocus at the NanoMAX beamline, taking advantage of the high coherent flux from the first diffraction limited storage ring MAX IV. The experimental results are in good agreement with a full simulation of the experiment based on a three-dimensional (3D) finite element model. The largest segments show a complex profile, where the lateral strain relaxation at the surface leads to a dome-shaped strain distribution from the mismatched interfaces, and a change from tensile to compressive strain within a single segment. The lattice tilt maps show a cross-shaped profile with excellent qualitative and quantitative agreement with the simulations. In contrast, the shortest measured InP segment is almost fully adapted to the surrounding GaInP segments. [Figure not available: see fulltext.].
  •  
10.
  • Lindelöw, Fredrik, et al. (författare)
  • Doping evaluation of InP nanowires for tandem junction solar cells
  • 2016
  • Ingår i: Nanotechnology. - : IOP Publishing. - 0957-4484 .- 1361-6528. ; 27:6
  • Tidskriftsartikel (refereegranskat)abstract
    • In order to push the development of nanowire-based solar cells further using optimized nanowire diameter and pitch, a doping evaluation of the nanowire geometry is necessary. We report on a doping evaluation of n-type InP nanowires with diameters optimized for light absorption, grown by the use of metal-organic vapor phase epitaxy in particle-assisted growth mode using tetraethyltin (TESn) as the dopant precursor. The charge carrier concentration was evaluated using four-probe resistivity measurements and spatially resolved Hall measurements. In order to reach the highest possible nanowire doping level, we set the TESn molar fraction at a high constant value throughout growth and varied the trimethylindium (TMIn) molar fraction for different runs. Analysis shows that the charge carrier concentration in nanowires grown with the highest TMIn molar fraction (not leading to kinking nanowires) results in a low carrier concentration of approximately 10(16) cm(-3). By decreasing the molar fraction of TMIn, effectively increasing the IV/III ratio, the carrier concentration increases up to a level of about 10(19) cm(-3), where it seems to saturate. Axial carrier concentration gradients along the nanowires are found, which can be correlated to a combination of changes in the nanowire growth rate, measured in situ by optical reflectometry, and polytypism of the nanowires observed in transmission electron microscopy.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy