SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dahl EE) "

Sökning: WFRF:(Dahl EE)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Bousquet, J, et al. (författare)
  • Nrf2-interacting nutrients and COVID-19: time for research to develop adaptation strategies
  • 2020
  • Ingår i: Clinical and translational allergy. - : Wiley. - 2045-7022. ; 10:1, s. 58-
  • Tidskriftsartikel (refereegranskat)abstract
    • There are large between- and within-country variations in COVID-19 death rates. Some very low death rate settings such as Eastern Asia, Central Europe, the Balkans and Africa have a common feature of eating large quantities of fermented foods whose intake is associated with the activation of the Nrf2 (Nuclear factor (erythroid-derived 2)-like 2) anti-oxidant transcription factor. There are many Nrf2-interacting nutrients (berberine, curcumin, epigallocatechin gallate, genistein, quercetin, resveratrol, sulforaphane) that all act similarly to reduce insulin resistance, endothelial damage, lung injury and cytokine storm. They also act on the same mechanisms (mTOR: Mammalian target of rapamycin, PPARγ:Peroxisome proliferator-activated receptor, NFκB: Nuclear factor kappa B, ERK: Extracellular signal-regulated kinases and eIF2α:Elongation initiation factor 2α). They may as a result be important in mitigating the severity of COVID-19, acting through the endoplasmic reticulum stress or ACE-Angiotensin-II-AT1R axis (AT1R) pathway. Many Nrf2-interacting nutrients are also interacting with TRPA1 and/or TRPV1. Interestingly, geographical areas with very low COVID-19 mortality are those with the lowest prevalence of obesity (Sub-Saharan Africa and Asia). It is tempting to propose that Nrf2-interacting foods and nutrients can re-balance insulin resistance and have a significant effect on COVID-19 severity. It is therefore possible that the intake of these foods may restore an optimal natural balance for the Nrf2 pathway and may be of interest in the mitigation of COVID-19 severity.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  • Kvist, EE, et al. (författare)
  • Quantitative pharmacogenetics of nortriptyline - A novel approach
  • 2001
  • Ingår i: Clinical Pharmacokinetics. - 0312-5963 .- 1179-1926. ; 40:11, s. 869-877
  • Forskningsöversikt (refereegranskat)abstract
    • Objective: To quantitatively model nortriptyline clearance as a function of the cytochrome P450 (CYP) 2D6 genotype and to estimate the contribution of genotype to the interindividual variability in steady-state plasma concentration and metabolic clearance. Design: Modelling study using data from two previously published studies. Participants: 20 healthy volunteers receiving single oral doses of nortriptyline and 20 patients with depression on steady-state oral treatment. Methods: A total of 275 nortriptyline plasma concentrations were analysed by standard nonlinear regression and nonlinear mixed effect models. The pharmacokinetic model was a 1-compartment model with first order absorption and elimination. All participants had previously been genotyped with respect to the CYP2D6 polymorphism. Results: A model in which the intrinsic clearance is a linear function of the number of functional CYP2D6 genes and hepatic blood flow is fixed to 60 L/h gave the closest fit of the pharmacokinetic model to the data. Stable estimates were obtained for population pharmacokinetic parameters and interindividual variances. Assuming 100% absorption, the model allows systemic clearance and bioavailability to be estimated. Bioavailability was found to vary between 0.17 and 0.71, depending on the genotype. Using the frequency distribution of CYP2D6 genotype with the above results we estimate that, in compliant Swedish individuals on nortriptyline monotherapy, the number of functional CYP2D6 genes could explain 21% of the total interindividual variance in oral clearance of nortriptyline and 34% of that in steady-state plasma concentrations. Conclusion: Nonlinear mixed-effects modelling can be used to quantify the influence of the number of functional CYP2D6 genes on the metabolic clearance and plasma concentration of drugs metabolised by this enzyme. Gene dose has a significant impact on drug pharmacokinetics and prior knowledge of it may aid in predicting plasma concentration of the drug and thus tailoring patient-specific dosage regimens.
  •  
8.
  •  
9.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy