SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dahlin Andreas P 1976 ) "

Sökning: WFRF:(Dahlin Andreas P 1976 )

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  • Chu, Jiangtao, et al. (författare)
  • Fluorescence imaging of macromolecule transport in high molecular weight cut-off microdialysis
  • 2014
  • Ingår i: Analytical and Bioanalytical Chemistry. - : Springer Science and Business Media LLC. - 1618-2642 .- 1618-2650. ; 406:29, s. 7601-7609
  • Tidskriftsartikel (refereegranskat)abstract
    • When microdialysis (MD) membrane exceeds molecular weight cut-off (MWCO) of 100 kDa, the fluid mechanics are in the ultrafiltration regime. Consequently, fluidic mass transport of macromolecules in the perfusate over the membrane may reduce the biological relevance of the sampling and cause an inflammatory response in the test subject. Therefore, a method to investigate the molecular transport of high MWCO MD is presented. An in vitro test chamber was fabricated to facilitate the fluorescent imaging of the MD sampling process, using fluoresceinylisothiocyanate (FITC) dextran and fluorescence microscopy. Qualitative studies on dextran behavior inside and outside the membrane were performed. Semiquantitative results showed clear dextran leakage from both 40 and 250 kDa dextran when 100 kDa MWCO membranes were used. Dextran 40 kDa leaked out with an order of magnitude higher concentration and the leakage pattern resembled more of a convective flow pattern compared with dextran 250 kDa, where the leakage pattern was more diffusion based. No leakage was observed when dextran 500 kDa was used as a colloid osmotic agent. The results in this study suggest that fluorescence imaging could be used as a method for qualitative and semiquantitative molecular transport and fluid dynamics studies of MD membranes and other hollow fiber catheter membranes.
  •  
5.
  • Chu, Jiangtao, et al. (författare)
  • Impact of static pressure on transmembrane fluid exchange in high molecular weight cut off microdialysis
  • 2014
  • Ingår i: Biomedical microdevices (Print). - : Springer Science and Business Media LLC. - 1387-2176 .- 1572-8781. ; 16:2, s. 301-310
  • Tidskriftsartikel (refereegranskat)abstract
    • With the interest of studying larger biomolecules by microdialysis (MD), this sampling technique has reached into the ultrafiltration region of fluid exchange, where fluid recovery (FR)  has a strong dependence on pressure. Hence in this study, we focus on the fluid exchange across the high molecular weight cut off MD membrane under the influence of the static pressure in the sampling environment. A theoretical model is presented for MD with such membranes, where FR has a linear dependence upon the static pressure of the sample. Transmembrane (TM) osmotic pressure difference and MD perfusion rate decide how fast FR increases with increased static pressure.A test chamber for in vitro MD under static pressure was constructed and validated. It can hold four MD probes under controlled pressurized conditions. Comparison showed good agreement between experiment and theory. Moreover, test results showed that the fluid recovery of the test chamber MD can be set accurately via the chamber pressure, which is controlled by sample injection into the chamber at precise rate. This in vitro system is designed for modelling in vivo MD in cerebrospinal fluid and studies with biological samples in this system may be good models for in vivo MD. 
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  • Hillered, Lars, et al. (författare)
  • Cerebral microdialysis for protein biomarker monitoring in the neurointensive care setting - a technical approach
  • 2014
  • Ingår i: Frontiers in Neurology. - : Frontiers Media SA. - 1664-2295. ; 5, s. 245-
  • Tidskriftsartikel (refereegranskat)abstract
    • Cerebral microdialysis (MD) was introduced as a neurochemical monitoring method in the early 1990s and is currently widely used for the sampling of low molecular weight molecules, signaling energy crisis, and cellular distress in the neurointensive care (NIC) setting. There is a growing interest in MD for harvesting of intracerebral protein biomarkers of secondary injury mechanisms in acute traumatic and neurovascular brain injury in the NIC community. The initial enthusiasm over the opportunity to sample protein biomarkers with high molecular weight cut-off MD catheters has dampened somewhat with the emerging realization of inherent methodological problems including protein-protein interaction, protein adhesion, and biofouling, causing an unstable in vivo performance (i.e., fluid recovery and extraction efficiency) of the MD catheter. This review will focus on the results of a multidisciplinary collaborative effort, within the Uppsala Berzelii Centre for Neurodiagnostics during the past several years, to study the features of the complex process of high molecular weight cut-off MD for protein biomarkers. This research has led to new methodology showing robust in vivo performance with optimized fluid recovery and improved extraction efficiency, allowing for more accurate biomarker monitoring. In combination with evolving analytical methodology allowing for multiplex biomarker analysis in ultra-small MD samples, a new opportunity opens up for high-resolution temporal mapping of secondary injury cascades, such as neuroinflammation and other cell injury reactions directly in the injured human brain. Such data may provide an important basis for improved characterization of complex injuries, e.g., traumatic and neurovascular brain injury, and help in defining targets and treatment windows for neuroprotective drug development.
  •  
10.
  • Undin, Torgny, 1975-, et al. (författare)
  • Mass Spectrometric Determination of the Effect of Surface Deactivation on Membranes Used for In-Situ Sampling of Cerebrospinal Fluid (CSF)
  • 2018
  • Ingår i: Separations. - : MDPI AG. - 2297-8739. ; 5:2
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper, a strategy for structured monitoring of surface modifications to control protein adsorption to membrane structures is presented. The already established on-surface enzymatic digestion (oSED) method combined with nano-liquid chromatography and tandem mass spectrometry (LC-MS/MS) analysis was employed for the analysis of proteins in ventricular cerebrospinal fluid (vCSF) from neurointensive care patients. Protein adsorption was studied by in-situ sampling in a temporally resolved manner on both immobilized native and Pluronic-deactivated membranes. Deactivation was significantly reducing the protein adsorption but it also induced novel selective properties of the surface. The proposed versatile strategy will facilitate protein-biomaterial, protein-polymer, protein-protein interaction studies in the future.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy