SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dalla Costa G) "

Sökning: WFRF:(Dalla Costa G)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Kuhle, J., et al. (författare)
  • Conversion from clinically isolated syndrome to multiple sclerosis: A large multicentre study
  • 2015
  • Ingår i: Multiple Sclerosis Journal. - : SAGE Publications. - 1352-4585 .- 1477-0970. ; 21:8, s. 1013-1024
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and objective: We explored which clinical and biochemical variables predict conversion from clinically isolated syndrome (CIS) to clinically definite multiple sclerosis (CDMS) in a large international cohort. Methods: Thirty-three centres provided serum samples from 1047 CIS cases with at least two years' follow-up. Age, sex, clinical presentation, T2-hyperintense lesions, cerebrospinal fluid (CSF) oligoclonal bands (OCBs), CSF IgG index, CSF cell count, serum 25-hydroxyvitamin D3 (25-OH-D), cotinine and IgG titres against Epstein-Barr nuclear antigen 1 (EBNA-1) and cytomegalovirus were tested for association with risk of CDMS. Results: At median follow-up of 4.31 years, 623 CIS cases converted to CDMS. Predictors of conversion in multivariable analyses were OCB (HR = 2.18, 95% CI = 1.71-2.77, p < 0.001), number of T2 lesions (two to nine lesions vs 0/1 lesions: HR = 1.97, 95% CI = 1.52-2.55, p < 0.001; >9 lesions vs 0/1 lesions: HR = 2.74, 95% CI = 2.04-3.68, p < 0.001) and age at CIS (HR per year inversely increase = 0.98, 95% CI = 0.98-0.99, p < 0.001). Lower 25-OH-D levels were associated with CDMS in univariable analysis, but this was attenuated in the multivariable model. OCB positivity was associated with higher EBNA-1 IgG titres. Conclusions: We validated MRI lesion load, OCB and age at CIS as the strongest independent predictors of conversion to CDMS in this multicentre setting. A role for vitamin D is suggested but requires further investigation.
  •  
3.
  •  
4.
  •  
5.
  • Torres, Bruna G. S., et al. (författare)
  • Population Pharmacokinetic Modeling as a Tool To Characterize the Decrease in Ciprofloxacin Free Interstitial Levels Caused by Pseudomonas aeruginosa Biofilm Lung Infection in Wistar Rats
  • 2017
  • Ingår i: Antimicrobial Agents and Chemotherapy. - 0066-4804 .- 1098-6596. ; 61:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Biofilm formation plays an important role in the persistence of pulmonary infections, for example, in cystic fibrosis patients. So far, little is known about the antimicrobial lung disposition in biofilm-associated pneumonia. This study aimed to evaluate, by microdialysis, ciprofloxacin (CIP) penetration into the lungs of healthy and Pseudomonas aeruginosa biofilm-infected rats and to develop a comprehensive model to describe the CIP disposition under both conditions. P. aeruginosa was immobilized into alginate beads and intratracheally inoculated 14 days before CIP administration (20 mg/kg of body weight). Plasma and microdialysate were sampled from different animal groups, and the observations were evaluated by noncompartmental analysis (NCA) and population pharmacokinetic (popPK) analysis. The final model that successfully described all data consisted of an arterial and a venous central compartment and two peripheral distribution compartments, and the disposition in the lung was modeled as a two-compartment model structure linked to the venous compartment. Plasma clearance was approximately 32% lower in infected animals, leading to a significantly higher level of plasma CIP exposure (area under the concentration-time curve from time zero to infinity, 27.3 +/- 12.1 mu g . h/ml and 13.3 +/- 3.5 mu g . h/ml in infected and healthy rats, respectively). Despite the plasma exposure, infected animals showed a four times lower tissue concentration/plasma concentration ratio (lung penetration factor = 0.44 and 1.69 in infected and healthy rats, respectively), and lung clearance (CLlung) was added to the model for these animals (CLlung = 0.643 liters/h/kg) to explain the lower tissue concentrations. Our results indicate that P. aeruginosa biofilm infection reduces the CIP free interstitial lung concentrations and increases plasma exposure, suggesting that plasma concentrations alone are not a good surrogate of lung concentrations.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy