SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Damen Wim) "

Sökning: WFRF:(Damen Wim)

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Damen, Wim, et al. (författare)
  • Embryonic development and the understanding of the adult body plan in myriapods
  • 2009
  • Ingår i: Soil Organisms. - 1864-6417. ; 81:3, s. 337-346
  • Tidskriftsartikel (refereegranskat)abstract
    • The adult body plan is laid down during embryonic and post-embryonic development of an organism. Here we review two examples for how data on gene expression during embryonic development have changed our understanding of the adult body plan of myriapods. Gene expression studies in the geophilomorph centipede Strigamia maritima (Leach, 1817) have demonstrated that a developmental constraint underlies the always-odd number of leg bearing segments in geophilomorph centipedes. Similarly, data on gene expression in the millipede Glomeris marginata (Villers, 1789) have demonstrated a decoupling of dorsal and ventral segmentation, which provided an explanation for the discrepancy in dorsal and ventral structures in the body of millipedes. Knowledge on the molecular mechanisms underlying embryonic development therefore significantly contributes to understanding morphological features of the adult myriapod body.
  •  
2.
  • Damen, Wim, et al. (författare)
  • Pair rule gene orthologs in spider segmentation
  • 2005
  • Ingår i: Evolution & Development. - 1520-541X .- 1525-142X. ; 7:6, s. 618-628
  • Tidskriftsartikel (refereegranskat)abstract
    • The activation of pair rule genes is the first indication of the metameric organization of the Drosophila embryo and thus forms a key step in the segmentation process. There are two classes of pair rule genes in Drosophila: the primary pair rule genes that are directly activated by the maternal and gap genes and the secondary pair rule genes that rely on input from the primary pair rule genes. Here we analyze orthologs of Drosophila primary and secondary pair rule orthologs in the spider Cupiennius salei. The expression patterns of the spider pair rule gene orthologs can be subdivided in three groups: even-skipped and runt-1 expression is in stripes that start at the posterior end of the growth zone and their expression ends before the stripes reach the anterior end of the growth zone, while hairy and pairberry-3 stripes also start at the posterior end, but do not cease in the anterior growth zone. Stripes of odd-paired, odd-skipped-related-1, and sloppy paired are only found in the anterior portion of the growth zone. The various genes thus seem to be active during different phases of segment specification. It is notable that the spider orthologs of the Drosophila primary pair rule genes are active more posterior in the growth zone and thus during earlier phases of segment specification than most orthologs of Drosophila secondary pair rule genes, indicating that parts of the hierarchy might be conserved between flies and spiders. The spider ortholog of the Drosophila pair rule gene fushi tarazu is not expressed in the growth zone, but is expressed in a Hox-like fashion. The segmentation function of fushi tarazu thus appears to be a newly acquired role of the gene in the lineage of the mandibulate arthropods.PMID:16336415
  •  
3.
  • Janssen, Ralf, et al. (författare)
  • A review of the correlation of tergites, sternites, and leg pairs in diplopods
  • 2006
  • Ingår i: Frontiers in Zoology. - : Springer Science and Business Media LLC. - 1742-9994. ; 3:2
  • Tidskriftsartikel (refereegranskat)abstract
    • In some arthropods there is a discrepancy in the number of dorsal tergites compared to the number of ventral sternites and leg pairs. The posterior tergites of the Diplopoda (millipedes) each cover two sternites and two pairs of legs. This segment arrangement is called diplosegmentation. The molecular nature of diplosegmentation is still unknown. There are even conflicting theories on the way the tergites and sternites/leg pairs should be correlated to each other. The different theories are based either on embryological analyses or on studies of the adult morphology and turned out to be not compatible with each other. We have previously used the expression patterns of segmentation genes in the pill millipede Glomeris marginata (Myriapoda: Diplopoda) to study millipede segmentation. Here we review the existing models on the alignment of tergites and leg pairs in millipedes with special emphasis on the implications the gene expression data have on the debate of tergite and leg pair assignment in millipedes. The remarkable outcome of the gene expression analysis was that (1) there is no coupling of dorsal and ventral segmentation and, importantly, that (2) the boundaries delimiting the tergites do neither correlate to the embryonic boundaries of the dorsal embryonic segments nor to the boundaries of the ventral embryonic segments. Using these new insights, we critically reinvestigated the correlation of tergites, sternites, and leg pairs in millipedes. Our model, which takes into account that the tergite boundaries are different from the dorsal embryonic segment boundaries, provides a solution of the problem of tergite to sternite/leg pair correlation in basal milipedes with non-fused exoskeletal elements and also has implications for derived species with exoskeletal rings. Moreover, lack of coupling of dorsal and ventral segmentation may also explain the discrepancy in numbers of dorsal tergites and ventral leg pairs seen in some other arthropods.
  •  
4.
  • Janssen, Ralf, et al. (författare)
  • Conservation, loss, and redeployment of Wnt ligands in protostomes : implications for understanding the evolution of segment formation
  • 2010
  • Ingår i: BMC Evolutionary Biology. - : Springer Science and Business Media LLC. - 1471-2148. ; 10, s. 374-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The Wnt genes encode secreted glycoprotein ligands that regulate a wide range of developmental processes, including axis elongation and segmentation. There are thirteen subfamilies of Wnt genes in metazoans and this gene diversity appeared early in animal evolution. The loss of Wnt subfamilies appears to be common in insects, but little is known about the Wnt repertoire in other arthropods, and moreover the expression and function of these genes have only been investigated in a few protostomes outside the relatively Wnt-poor model species Drosophila melanogaster and Caenorhabditis elegans. To investigate the evolution of this important gene family more broadly in protostomes, we surveyed the Wnt gene diversity in the crustacean Daphnia pulex, the chelicerates Ixodes scapularis and Achaearanea tepidariorum, the myriapod Glomeris marginata and the annelid Platynereis dumerilii. We also characterised Wnt gene expression in the latter three species, and further investigated expression of these genes in the beetle Tribolium castaneum. Results: We found that Daphnia and Platynereis both contain twelve Wnt subfamilies demonstrating that the common ancestors of arthropods, ecdysozoans and protostomes possessed all members of all Wnt subfamilies except Wnt3. Furthermore, although there is striking loss of Wnt genes in insects, other arthropods have maintained greater Wnt gene diversity. The expression of many Wnt genes overlap in segmentally reiterated patterns and in the segment addition zone, and while these patterns can be relatively conserved among arthropods and the annelid, there have also been changes in the expression of some Wnt genes in the course of protostome evolution. Nevertheless, our results strongly support the parasegment as the primary segmental unit in arthropods, and suggest further similarities between segmental and parasegmental regulation by Wnt genes in annelids and arthropods respectively. Conclusions: Despite frequent losses of Wnt gene subfamilies in lineages such as insects, nematodes and leeches, most protostomes have probably maintained much of their ancestral repertoire of twelve Wnt genes. The maintenance of a large set of these ligands could be in part due to their combinatorial activity in various tissues.
  •  
5.
  • Janssen, Ralf, et al. (författare)
  • Diverged and conserved aspects of heart formation in a spider
  • 2008
  • Ingår i: Evolution & Development. - 1520-541X .- 1525-142X. ; 10:2, s. 155-165
  • Tidskriftsartikel (refereegranskat)abstract
    • Heart development exhibits some striking similarities between vertebrates and arthropods, for example in both cases the heart develops as a linear tube from mesodermal cells. Furthermore, the underlying molecular pathways exhibit a significant number of similarities between vertebrates and the fruit fly Drosophila, suggesting a common origin of heart development in the last common ancestor of flies and vertebrates. However, there is hardly any molecular data from other animals. Here we show that many of the key genes are also active in heart development in the spider Cupiennius salei. Spiders belong to the chelicerates and are distantly related to insects with respect to the other arthropods. The tinman/Nkx2.5 ortholog is the first gene to be specifically expressed in the presumptive spider heart, like in flies and vertebrates. We also show that tinman is expressed in a similar way in the beetle Tribolium castaneum. Taken together this demonstrates that tinman has a conserved role in the specification of the arthropod heart. In addition, we analyzed the expression of other heart genes (decapentaplegic, Wnt5, H15, even-skipped, and Mef2 ) in Cupiennius. The expression of these genes suggests that the genetic pathway of heart development may be largely conserved among arthropods. However, a major difference is seen in the earlier expression of the even-skipped gene in the developing spider heart compared with Drosophila, implying that the role of even-skipped in heart formation might have changed during arthropod evolution. The most striking finding, however, is that in addition to the dorsal tissue of the fourth walking leg segment and the opisthosomal segments, we discovered tinman-expressing cells that arise from a position dorsal to the cephalic lobe and that contribute to the anterior dorsal vessel. In contrast to the posterior heart tissue, these cells do not express the other heart genes. The spider heart thus is composed of two distinct populations of cells.
  •  
6.
  •  
7.
  • Janssen, Ralf, et al. (författare)
  • Evidence for Wg-independent tergite boundary formation in the millipede Glomeris marginata
  • 2008
  • Ingår i: Development, Genes and Evolution. - : Springer Science and Business Media LLC. - 0949-944X .- 1432-041X. ; 218:7, s. 361-370
  • Tidskriftsartikel (refereegranskat)abstract
    • The correlation between dorsal and ventral segmental units in diplopod myriapods is complex and disputed. Recent results with engrailed (en), hedgehog (hh), wingless (wg), and cubitus-interruptus (ci) have shown that the dorsal segments are patterned differently from the ventral segments. Ventrally, gene expression is compatible with the classical autoregulatory loop known from Drosophila to specify the parasegment boundary. In the dorsal segments, however, this Wg/Hh autoregulatory loop cannot be present because the observed gene expression patterns argue against the involvement of Wg signalling. In this paper, we present further evidence against an involvement of Wg signalling in dorsal segmentation and propose a hypothesis about how dorsal segmental boundaries may be controlled in a wg-independent way. We find that (1) the Notum gene, a modulator of the Wg gradient in Drosophila, is not expressed in the dorsal segments. (2) The H15/midline gene, a repressor of Wg action in Drosophila, is not expressed in the dorsal segments, except for future heart tissue. (3) The patched (ptc) gene, which encodes a Hh receptor, is strongly expressed in the dorsal segments, which is incompatible with Wg-Hh autoregulation. The available data suggest that anterior-posterior (AP) boundary formation in dorsal segments could instead rely on Dpp signalling rather than Wg signalling. We present a hypothesis that relies on Hh-mediated activation of Dpp signalling and optomotor-blind (omb) expression to establish the dorsal AP boundary (the future tergite boundary). The proposed mechanism is similar to the mechanism used to establish the AP boundary in Drosophila wings and ventral pleura.
  •  
8.
  • Janssen, Ralf, et al. (författare)
  • Expression of collier in the premandibular segment of myriapods : support for the traditional Atelocerata concept or a case of convergence?
  • 2011
  • Ingår i: BMC Evolutionary Biology. - : Springer Science and Business Media LLC. - 1471-2148. ; 11, s. 50-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: A recent study on expression and function of the ortholog of the Drosophila collier (col) gene in various arthropods including insects, crustaceans and chelicerates suggested a de novo function of col in the development of the appendage-less intercalary segment of insects. However, this assumption was made on the background of the now widely-accepted Pancrustacea hypothesis that hexapods represent an in-group of the crustaceans. It was therefore assumed that the expression of col in myriapods would reflect the ancestral state like in crustaceans and chelicerates, i.e. absence from the premandibular/intercalary segment and hence no function in its formation. Results: We find that col in myriapods is expressed at early developmental stages in the same anterior domain in the head, the parasegment 0, as in insects. Comparable early expression of col is not present in the anterior head of an onychophoran that serves as an out-group species closely related to the arthropods. Conclusions: Our findings suggest either that i) the function of col in head development has been conserved between insects and myriapods, and that these two classes of arthropods may be closely related supporting the traditional Atelocerata (or Tracheata) hypothesis; or ii) alternatively col function could have been lost in early head development in crustaceans, or may indeed have evolved convergently in insects and myriapods.
  •  
9.
  • Janssen, Ralf, 1975-, et al. (författare)
  • Expression of myriapod pair rule gene orthologs
  • 2011
  • Ingår i: EvoDevo. - : Springer Science and Business Media LLC. - 2041-9139. ; 2:5
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundSegmentation is a hallmark of the arthropods; most knowledge about the molecular basis of arthropod segmentation comes from work on the fly Drosophila melanogaster. In this species a hierarchic cascade of segmentation genes subdivides the blastoderm stepwise into single segment wide regions. However, segmentation in the fly is a derived feature since all segments form virtually simultaneously. Conversely, in the vast majority of arthropods the posterior segments form one at a time from a posterior pre-segmental zone. The pair rule genes (PRGs) comprise an important level of the Drosophila segmentation gene cascade and are indeed the first genes that are expressed in typical transverse stripes in the early embryo. Information on expression and function of PRGs outside the insects, however, is scarce.ResultsHere we present the expression of the pair rule gene orthologs in the pill millipede Glomeris marginata (Myriapoda: Diplopoda). We find evidence that these genes are involved in segmentation and that components of the hierarchic interaction of the gene network as found in insects may be conserved. We further provide evidence that segments are formed in a single-segment periodicity rather than in pairs of two like in another myriapod, the centipede Strigamia maritima. Finally we show that decoupling of dorsal and ventral segmentation in Glomeris appears already at the level of the PRGs.ConclusionsAlthough the pair rule gene network is partially conserved among insects and myriapods, some aspects of PRG interaction are, as suggested by expression pattern analysis, convergent, even within the Myriapoda. Conserved expression patterns of PRGs in insects and myriapods, however, may represent ancestral features involved in segmenting the arthropod ancestor.
  •  
10.
  • Janssen, Ralf, et al. (författare)
  • Expression of pair rule gene orthologs in the blastoderm of a myriapod : evidence for pair rule-like mechanisms?
  • 2012
  • Ingår i: BMC Developmental Biology. - 1471-213X. ; 12, s. 15-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: A hallmark of Drosophila segmentation is the stepwise subdivision of the body into smaller and smaller units, and finally into the segments. This is achieved by the function of the well-understood segmentation gene cascade. The first molecular sign of a segmented body appears with the action of the pair rule genes, which are expressed as transversal stripes in alternating segments. Drosophila development, however, is derived, and in most other arthropods only the anterior body is patterned (almost) simultaneously from a pre-existing field of cells; posterior segments are added sequentially from a posterior segment addition zone. A long-standing question is to what extent segmentation mechanisms known from Drosophila may be conserved in short-germ arthropods. Despite the derived developmental modes, it appears more likely that conserved mechanisms can be found in anterior patterning. Results: Expression analysis of pair rule gene orthologs in the blastoderm of the pill millipede Glomeris marginata (Myriapoda: Diplopoda) suggests that these genes are generally involved in segmenting the anterior embryo. We find that the Glomeris pairberry-1 (pby-1) gene is expressed in a pair rule pattern that is also found in insects and a chelicerate, the mite Tetraynchus urticae. Other Glomeris pair rule gene orthologs are expressed in double segment wide domains in the blastoderm, which at subsequent stages split into two stripes in adjacent segments. Conclusions: The expression patterns of the millipede pair rule gene orthologs resemble pair rule patterning in Drosophila and other insects, and thus represent evidence for the presence of an ancestral pair rule-like mechanism in myriapods. We discuss the possibilities that blastoderm patterning may be conserved in long-germ and short-germ arthropods, and that a posterior double segmental mechanism may be present in short-germ arthropods.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy