SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dangor A.) "

Sökning: WFRF:(Dangor A.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Haines, M. G., et al. (författare)
  • Fiber Z-pinch Experiments and Calculations in the Finite Larmor Radius Regime
  • 1996
  • Ingår i: Laser and particle beams (Print). - 0263-0346 .- 1469-803X. ; 14, s. 261-271
  • Tidskriftsartikel (refereegranskat)abstract
    • The dense Z-pinch project at Imperial College is aimed at achieving radiative collapse to high density in a hydrogen plasma, and also to study plasmas close to controlled fusion conditions. To this end, the MAGPIE generator (2.4 MV, 1.25, and 200 ns) has been built and tested, and is now giving preliminary experimental data at 60% of full voltage for carbon and CD2 fibers. These discharges are characterized by an initial radial expansion followed by the occurrence of m = 0 structures with transient X-ray emission from bright spots. Late in the discharge a disruption can occur, accompanied by hard X-ray emission from the anode due to an energetic electron beam and, in the case of CD2 fibers, a neutron burst. Concomitant theoretical studies have solved the linear stability problem for a Z-pinch with large ion Larmor radii, showing that a reduction in growth rate of m = 0 and m = 1 modes to about 20% of the magnetohydrodynamic (MHD) value can occur for a parabolic density profile when the Larmor radius is optimally 20% of the pinch radius. Two dimensional MHD simulations of Z-pinches in two extremes of focussed short-pulse laserplasma interactions and of galactic jets reveal a nonlinear stabilizing effect in the presence of sheared flow. One-dimensional simulations show that at low line density the lower hybrid drift instability can lead to coronal radial expansion of a Z-pinch plasma.
  •  
2.
  • Dangor, Ziyaad, et al. (författare)
  • Association of infant Rib and Alp1 surface protein N-terminal domain immunoglobulin G and invasive Group B Streptococcal disease in young infants
  • 2023
  • Ingår i: Vaccine. - : Elsevier BV. - 0264-410X. ; 41:10, s. 1679-1683
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Vaccine development for Group B Streptococcus (GBS), a common cause of invasive disease in early-infancy and adverse pregnancy outcomes, include exploring widely-expressed GBS surface proteins as vaccine epitopes. We investigated the association between natural infant serum IgG against the RibN and Alp1N domains and risk of invasive GBS disease caused by isolates expressing these proteins. Methods: We analyzed maternal and infant serum samples from GBS disease cases and infants born to GBS-colonized women controls. Bayesian modelling was used to calculate the GBS homotypic IgG concentration associated with risk reduction of invasive disease in the infant. Results: PCR-based typing of 85 GBS invasive isolates showed 46 and 24 possessing the gene for Rib and Alp1, respectively. These were matched to 46 and 36 infant controls whose mothers were colonized with GBS expressing Rib and Alp1, respectively. RibN IgG geometric mean concentrations (GMC) were lower in cases than controls among infants (0.01; 95 %CI: 0.01–0.02 vs 0.04; 95 %CI: 0.03–0.06; p < 0.001), no significant difference was found between maternal RibN IgG GMC in cases compared to controls. Alp1N IgG GMC was also lower in infant cases (0.02; 95 %CI: 0.01–0.03) than controls (0.05; 95 %CI: 0.04–0.07; p < 0.001); albeit not so in mothers. An infant IgG threshold ≥ 0.428 and ≥ 0.112 µg/mL was associated with 90 % risk reduction of invasive GBS disease due to Rib and Alp1 expressing strains, respectively. Discussion: Lower serum RibN and Alp1N IgG GMC were evident in infants with invasive GBS disease compared with controls born to women colonized with GBS expressing the homotypic protein. These data support the evaluation of Alp family proteins as potential vaccine candidates against invasive GBS disease.
  •  
3.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy