SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Danielson Laura) "

Sökning: WFRF:(Danielson Laura)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ferrucci, Veronica, et al. (författare)
  • Metastatic group 3 medulloblastoma is driven by PRUNE1 targeting NME1–TGF-β–OTX2–SNAIL via PTEN inhibitio
  • 2018
  • Ingår i: Brain. - : Oxford University Press (OUP). - 0006-8950 .- 1460-2156. ; 141:5, s. 1300-1319
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic modifications during development of paediatric groups 3 and 4 medulloblastoma are responsible for their highly metastatic properties and poor patient survival rates. PRUNE1 is highly expressed in metastatic medulloblastoma group 3, which is characterized by TGF-β signalling activation, c-MYC amplification, and OTX2 expression. We describe the process of activation of the PRUNE1 signalling pathway that includes its binding to NME1, TGF-β activation, OTX2 upregulation, SNAIL (SNAI1) upregulation, and PTEN inhibition. The newly identified small molecule pyrimido-pyrimidine derivative AA7.1 enhances PRUNE1 degradation, inhibits this activation network, and augments PTEN expression. Both AA7.1 and a competitive permeable peptide that impairs PRUNE1/NME1 complex formation, impair tumour growth and metastatic dissemination in orthotopic xenograft models with a metastatic medulloblastoma group 3 cell line (D425-Med cells). Using whole exome sequencing technology in metastatic medulloblastoma primary tumour cells, we also define 23 common ‘non-synonymous homozygous’ deleterious gene variants as part of the protein molecular network of relevance for metastatic processes. This PRUNE1/TGF-β/OTX2/PTEN axis, together with the medulloblastoma-driver mutations, is of relevance for future rational and targeted therapies for metastatic medulloblastoma group 3.
  •  
2.
  •  
3.
  • Jakobsson, Martin, et al. (författare)
  • The International Bathymetric Chart of the Arctic Ocean Version 4.0
  • 2020
  • Ingår i: Scientific Data. - : Springer Science and Business Media LLC. - 2052-4463. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Bathymetry (seafloor depth), is a critical parameter providing the geospatial context for a multitude of marine scientific studies. Since 1997, the International Bathymetric Chart of the Arctic Ocean (IBCAO) has been the authoritative source of bathymetry for the Arctic Ocean. IBCAO has merged its efforts with the Nippon Foundation-GEBCO-Seabed 2030 Project, with the goal of mapping all of the oceans by 2030. Here we present the latest version (IBCAO Ver. 4.0), with more than twice the resolution (200 x 200m versus 500 x 500m) and with individual depth soundings constraining three times more area of the Arctic Ocean (similar to 19.8% versus 6.7%), than the previous IBCAO Ver. 3.0 released in 2012. Modern multibeam bathymetry comprises similar to 14.3% in Ver. 4.0 compared to similar to 5.4% in Ver. 3.0. Thus, the new IBCAO Ver. 4.0 has substantially more seafloor morphological information that offers new insights into a range of submarine features and processes; for example, the improved portrayal of Greenland fjords better serves predictive modelling of the fate of the Greenland Ice Sheet. Machine-accessible metadata file describing the reported data: 10.6084/m9.figshare.12369314
  •  
4.
  • Luttens, Andreas, et al. (författare)
  • Ultralarge Virtual Screening Identifies SARS-CoV-2 Main Protease Inhibitors with Broad-Spectrum Activity against Coronaviruses
  • 2022
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 144:7, s. 2905-2920
  • Tidskriftsartikel (refereegranskat)abstract
    • Drugs targeting SARS-CoV-2 could have saved millions of lives during the COVID-19 pandemic, and it is now crucial to develop inhibitors of coronavirus replication in preparation for future outbreaks. We explored two virtual screening strategies to find inhibitors of the SARS-CoV-2 main protease in ultralarge chemical libraries. First, structure-based docking was used to screen a diverse library of 235 million virtual compounds against the active site. One hundred top-ranked compounds were tested in binding and enzymatic assays. Second, a fragment discovered by crystallographic screening was optimized guided by docking of millions of elaborated molecules and experimental testing of 93 compounds. Three inhibitors were identified in the first library screen, and five of the selected fragment elaborations showed inhibitory effects. Crystal structures of target-inhibitor complexes confirmed docking predictions and guided hit-to-lead optimization, resulting in a noncovalent main protease inhibitor with nanomolar affinity, a promising in vitro pharmacokinetic profile, and broad-spectrum antiviral effect in infected cells.
  •  
5.
  • Wallin, Margareta, et al. (författare)
  • Proteolytic cleavage of microtubule-associated proteins by retroviral proteinases
  • 1990
  • Ingår i: Journal of General Virology. - : Microbiology Society. - 0022-1317 .- 1465-2099. ; 71:Pt 9, s. 1985-1991
  • Tidskriftsartikel (refereegranskat)abstract
    • Aspartic proteinases from human immunodeficiency virus type 1 (HIV-1) and avian myeloblastosis virus (AMV) were found to interfere with microtubule assembly. Preincubation of the proteinases with purified brain microtubule proteins (tubulin and microtubule-associated proteins) at low ionic strength (pH 6.8), completely inhibited microtubule assembly. Analysis of microtubule proteins after incubation with proteinase showed no effect on tubulin but extensive cleavage of the microtubule-associated proteins 1 and 2 was observed. The digestion by the two proteinases differed. In the presence of HIV-1 proteinase, a fragment with an Mr of approximately 300, appeared, as well as at least three other new fragments, with Mr values of 188,000, 124,000 and 73,000. In the presence of AMV proteinase, the microtubule-associated proteins were extensively digested to many small fragments. The extending microtubule-associated proteins normally seen by electron microscopy on the microtubule surface disappeared after treatment with AMV proteinase. Our results show that retroviral proteinases are not restricted to cleavage of viral polyproteins in vitro. It is suggested that proteolysis of microtubular proteins by viral proteinases is an important step in viral pathogenicity and that it may be part of a mechanism causing degenerative effects in infected cells.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy