SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Danniswara Ken) "

Sökning: WFRF:(Danniswara Ken)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Danniswara, Ken, et al. (författare)
  • Stream Processing in Community Network Clouds
  • 2015
  • Ingår i: Future Internet of Things and Cloud (FiCloud), 2015 3rd International Conference on. - : IEEE conference proceedings. ; , s. 800-805
  • Konferensbidrag (refereegranskat)abstract
    • Community Network Cloud is an emerging distributed cloud infrastructure that is built on top of a community network. The infrastructure consists of a number of geographically distributed compute and storage resources, contributed by community members, that are linked together through the community network. Stream processing is an important enabling technology that, if provided in a Community Network Cloud, would enable a new class of applications, such as social analysis, anomaly detection, and smart home power management. However, modern stream processing engines are designed to be used inside a data center, where servers communicate over a fast and reliable network. In this work, we evaluate the Apache Storm stream processing framework in an emulated Community Network Cloud in order to identify the challenges and bottlenecks that exist in the current implementation. The community network emulation was performed using data collected from the Guifi.net community network, Spain. Our evaluation results show that, with proper configuration of the heartbeats, it is possible to run Apache Storm in a Community Network Cloud. The performance is sensitive to the placement of the Storm components in the network. The deployment of management components on wellconnected nodes improves the Storm topology scheduling time, fault tolerance, and recovery time. Our evaluation also indicates that the Storm scheduler and the stream groupings need to be aware of the network topology and location of stream sources in order to optimally place Storm spouts and bolts to improve performance.
  •  
2.
  • Peiro Sajjad, Hooman, et al. (författare)
  • SpanEdge : Towards unifying stream processing over central and near-the-edge data centers
  • 2016
  • Ingår i: Proceedings - 1st IEEE/ACM Symposium on Edge Computing, SEC 2016. - : Institute of Electrical and Electronics Engineers Inc.. - 9781509033218 ; , s. 168-178
  • Konferensbidrag (refereegranskat)abstract
    • In stream processing, data is streamed as a continuous flow of data items, which are generated from multiple sources and geographical locations. The common approach for stream processing is to transfer raw data streams to a central data center that entails communication over the wide-area network (WAN). However, this approach is inefficient and falls short for two main reasons: i) the burst in the amount of data generated at the network edge by an increasing number of connected devices, ii) the emergence of applications with predictable and low latency requirements. In this paper, we propose SpanEdge, a novel approach that unifies stream processing across a geo-distributed infrastructure, including the central and near-the-edge data centers. SpanEdge reduces or eliminates the latency incurred by WAN links by distributing stream processing applications across the central and the near-the-edge data centers. Furthermore, SpanEdge provides a programming environment, which allows programmers to specify parts of their applications that need to be close to the data source. Programmers can develop a stream processing application, regardless of the number of data sources and their geographical distributions. As a proof of concept, we implemented and evaluated a prototype of SpanEdge. Our results show that SpanEdge can optimally deploy the stream processing applications in a geo-distributed infrastructure, which significantly reduces the bandwidth consumption and the response latency. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2
Typ av publikation
konferensbidrag (2)
Typ av innehåll
refereegranskat (2)
Författare/redaktör
Al-Shishtawy, Ahmad (2)
Vlassov, Vladimir (2)
Danniswara, Ken (2)
Peiro Sajjad, Hooman (2)
Lärosäte
Kungliga Tekniska Högskolan (2)
RISE (1)
Språk
Engelska (2)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (1)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy