SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dantzer Francoise) "

Sökning: WFRF:(Dantzer Francoise)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Beck, Carole, et al. (författare)
  • PARP3, a new therapeutic target to alter Rictor/mTORC2 signaling and tumor progression in BRCA1-associated cancers
  • 2019
  • Ingår i: Cell Death and Differentiation. - : Nature Publishing Group. - 1350-9047 .- 1476-5403. ; 26:9, s. 1615-1630
  • Tidskriftsartikel (refereegranskat)abstract
    • PARP3 has been shown to be a key driver of TGF beta-induced epithelial-to-mesenchymal transition (EMT) and sternness in breast cancer cells, emerging as an attractive therapeutic target. Nevertheless, the therapeutic value of PARP3 inhibition has not yet been assessed. Here we investigated the impact of the absence of PARP3 or its inhibition on the tumorigenicity of BRCA1-proficient versus BRCA1-deficient breast cancer cell lines, focusing on the triple-negative breast cancer subtype (TNBC). We show that PARP3 knockdown exacerbates centrosome amplification and genome instability and reduces survival of BRCA1-deficient TNBC cells. Furthermore, we engineered PARP3(-/- )BRCA1-deficient or BRCA1-proficient TNBC cell lines using the CRISPR/nCas9(D10A) gene editing technology and demonstrate that the absence of PARP3 selectively suppresses the growth, survival and in vivo tumorigenicity of BRCA1-deficient TNBC cells, mechanistically via effects associated with an altered Rictor/mTORC2 signaling complex resulting from enhanced ubiquitination of Rictor. Accordingly, PARP3 interacts with and ADP-ribosylates GSK3 beta, a positive regulator of Rictor ubiquitination and degradation. Importantly, these phenotypes were rescued by re-expression of a wild-type PARP3 but not by a catalytic mutant, demonstrating the importance of PARP3's catalytic activity. Accordingly, reduced survival and compromised Rictor/mTORC2 signaling were also observed using a cell-permeable PARP3-specific inhibitor. We conclude that PARP3 and BRCA1 are synthetic lethal and that targeting PARP3's catalytic activity is a promising therapeutic strategy for BRCA1-associated cancers via the Rictor/mTORC2 signaling pathway.
  •  
2.
  • Lüscher, Bernhard, et al. (författare)
  • ADP-ribosyltransferases, an update on function and nomenclature
  • 2022
  • Ingår i: The FEBS Journal. - : John Wiley & Sons. - 1742-464X .- 1742-4658. ; 289:23, s. 7399-7410
  • Tidskriftsartikel (refereegranskat)abstract
    • ADP-ribosylation, a modification of proteins, nucleic acids, and metabolites, confers broad functions, including roles in stress responses elicited, for example, by DNA damage and viral infection and is involved in intra- and extracellular signaling, chromatin and transcriptional regulation, protein biosynthesis, and cell death. ADP-ribosylation is catalyzed by ADP-ribosyltransferases (ARTs), which transfer ADP-ribose from NAD+ onto substrates. The modification, which occurs as mono- or poly-ADP-ribosylation, is reversible due to the action of different ADP-ribosylhydrolases. Importantly, inhibitors of ARTs are approved or are being developed for clinical use. Moreover, ADP-ribosylhydrolases are being assessed as therapeutic targets, foremost as antiviral drugs and for oncological indications. Due to the development of novel reagents and major technological advances that allow the study of ADP-ribosylation in unprecedented detail, an increasing number of cellular processes and pathways are being identified that are regulated by ADP-ribosylation. In addition, characterization of biochemical and structural aspects of the ARTs and their catalytic activities have expanded our understanding of this protein family. This increased knowledge requires that a common nomenclature be used to describe the relevant enzymes. Therefore, in this viewpoint, we propose an updated and broadly supported nomenclature for mammalian ARTs that will facilitate future discussions when addressing the biochemistry and biology of ADP-ribosylation. This is combined with a brief description of the main functions of mammalian ARTs to illustrate the increasing diversity of mono- and poly-ADP-ribose mediated cellular processes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy