SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Datta Kanan K.) "

Sökning: WFRF:(Datta Kanan K.)

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Zackrisson, Erik, et al. (författare)
  • Bubble mapping with the Square Kilometre Array - I. Detecting galaxies with Euclid, JWST, WFIRST, and ELT within ionized bubbles in the intergalactic medium at z > 6
  • 2020
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 493:1, s. 855-870
  • Tidskriftsartikel (refereegranskat)abstract
    • The Square Kilometre Array (SKA) is expected to provide the first tomographic observations of the neutral intergalactic medium at redshifts z > 6 and pinpoint the locations of individual ionized bubbles during early stages of cosmic reionization. In scenarios where star-forming galaxies provide most of the ionizing photons required for cosmic reionization, one expects the first ionized bubbles to be centred on overdensities of such galaxies. Here, we model the properties of galaxy populations within isolated, ionized bubbles that SKA-1 should be able to resolve at z approximate to 7-10, and explore the prospects for galaxy counts within such structures with various upcoming near-infrared telescopes. We find that, for the bubbles that are within reach of SKA-1 tomography, the bubble volume is closely tied to the number of ionizing photons that have escaped from the galaxies within. In the case of galaxy-dominated reionization, galaxies are expected to turn up above the spectroscopic detection threshold of JWST and ELT in even the smallest resolvable bubbles at z <= 10. The prospects of detecting galaxies within these structures in purely photometric surveys with Euclid, WFIRST, JWST, or ELT are also discussed. While spectroscopy is preferable towards the end of reionization to provide a robust sample of bubble members, multiband imaging may be a competitive option for bubbles at z approximate to 10, due to the very small number of line-of-sight interlopers expected at these redshifts.
  •  
2.
  • Ghara, Raghunath, et al. (författare)
  • Prediction of the 21-cm signal from reionization : comparison between 3D and 1D radiative transfer schemes
  • 2018
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 476:2, s. 1741-1755
  • Tidskriftsartikel (refereegranskat)abstract
    • Three-dimensional radiative transfer simulations of the epoch of reionization can produce realistic results, but are computationally expensive. On the other hand, simulations relying on one-dimensional radiative transfer solutions are faster but limited in accuracy due to their more approximate nature. Here, we compare the performance of the reionization simulation codes GRIZZLY and C-2-RAY which use 1D and 3D radiative transfer schemes, respectively. The comparison is performed using the same cosmological density fields, halo catalogues, and source properties. We find that the ionization maps, as well as the 21-cm signal maps from these two simulations are very similar even for complex scenarios which include thermal feedback on low-mass haloes. The comparison between the schemes in terms of the statistical quantities such as the power spectrum of the brightness temperature fluctuation agrees with each other within 10 per cent error throughout the entire reionization history. GRIZZLY seems to perform slightly better than the seminumerical approaches considered in Majumdar et al. which are based on the excursion set principle. We argue that GRIZZLY can be efficiently used for exploring parameter space, establishing observations strategies, and estimating parameters from 21-cm observations.
  •  
3.
  • Bagla, J. S., et al. (författare)
  • H i as a probe of the large-scale structure in the post-reionization universe
  • 2010
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 407:1, s. 567-580
  • Tidskriftsartikel (refereegranskat)abstract
    • We model the distribution of neutral hydrogen (H i) in the post-reionization universe. This model uses gravity-only N-body simulations and an ansatz to assign H i to dark matter haloes that is consistent with observational constraints and theoretical models. We resolve the smallest haloes that are likely to host H i in the simulations; care is also taken to ensure that any errors due to the finite size of the simulation box are small. We then compute the smoothed one-point probability distribution function and the power spectrum of fluctuations in H i. This is compared with other predictions that have been made using different techniques. We highlight the significantly high bias for the H i distribution at small scales. This aspect has not been discussed before. We then discuss the prospects of the detection with the Murchison Widefield Array (MWA), Giant Meterwave Radio Telescope (GMRT) and the hypothetical MWA5000. The MWA5000 can detect visibility correlations at large angular scales at all redshifts in the post-reionization era. The GMRT can detect visibility correlations at lower redshifts; specifically there is a strong case for a survey at z similar or equal to 1.3. We also discuss prospects for direct detection of rare peaks in the H i distribution using the GMRT. We show that direct detection should be possible with an integration time that is comparable to, or even less than, the time required for a statistical detection. Specifically, it is possible to make a statistical detection of the H i distribution by measuring the visibility correlation and direct detection of rare peaks in the H i distribution at z similar or equal to 1.3 with the GMRT in less than 1000 h of observations.
  •  
4.
  • Datta, Kanan K., et al. (författare)
  • Light-cone effect on the reionization 21-cm power spectrum
  • 2012
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 424:3, s. 1877-1891
  • Tidskriftsartikel (refereegranskat)abstract
    • Observations of redshifted 21-cm radiation from neutral hydrogen during the epoch of reionization are considered to constitute the most promising tool to probe that epoch. One of the major goals of the first generation of low-frequency radio telescopes is to measure the 3D 21-cm power spectrum. However, the 21-cm signal could evolve substantially along the line-of-sight (LOS) direction of an observed 3D volume, since the received signal from different planes transverses to the LOS originated from different look-back times and could therefore be statistically different. Using numerical simulations we investigate this so-called light-cone effect on the spherically averaged 3D 21-cm power spectrum. For this version of the power spectrum, we find that the effect mostly averages out and observe a smaller change in the power spectrum compared to the amount of evolution in the mean 21-cm signal and its rms variations along the LOS direction. Nevertheless, changes up to similar to 50?per cent at large scales are possible. In general, the power is enhanced/suppressed at large/small scales when the effect is included. The cross-over mode below/above which the power is enhanced/suppressed moves towards larger scales as reionization proceeds. When considering the 3D power spectrum we find it to be anisotropic at the late stages of reionization and on large scales. The effect is dominated by the evolution of the ionized fraction of hydrogen during reionization and including peculiar velocities hardly changes these conclusions. We present simple analytical models which explain qualitatively all the features we see in the simulations.
  •  
5.
  • Datta, Kanan K., et al. (författare)
  • Light cone effect on the reionization 21-cm signal - II. Evolution, anisotropies and observational implications
  • 2014
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 442:2, s. 1491-1506
  • Tidskriftsartikel (refereegranskat)abstract
    • Measurements of the H i 21-cm power spectra from the reionization epoch will be influenced by the evolution of the signal along the line-of-sight direction of any observed volume. We use numerical as well as seminumerical simulations of reionization in a cubic volume of 607 Mpc across to study this so-called light-cone effect on the H i 21-cm power spectrum. We find that the light-cone effect has the largest impact at two different stages of reionization: one when reionization is similar to 20 per cent and other when it is similar to 80 per cent completed. We find a factor of similar to 4 amplification of the power spectrum at the largest scale available in our simulations. We do not find any significant anisotropy in the 21-cm power spectrum due to the light-cone effect. We argue that for the power spectrum to become anisotropic, the light-cone effect would have to make the ionized bubbles significantly elongated or compressed along the line of sight, which would require extreme reionization scenarios. We also calculate the two-point correlation functions parallel and perpendicular to the line of sight and find them to differ. Finally, we calculate an optimum frequency bandwidth below which the light-cone effect can be neglected when extracting power spectra from observations. We find that if one is willing to accept a 10 per cent error due to the light-cone effect, the optimum frequency bandwidth for k = 0.056 Mpc(-1) is similar to 7.5 MHz. For k = 0.15 and 0.41 Mpc(-1), the optimum bandwidth is similar to 11 and similar to 16 MHz, respectively.
  •  
6.
  • Datta, Kanan K., et al. (författare)
  • Prospects of observing a quasar H ii region during the epoch of reionization with the redshifted 21-cm signal
  • 2012
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 424:1, s. 762-778
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a study of the impact of a bright quasar on the redshifted 21-cm signal during the epoch of reionization (EoR). Using three different cosmological radiative transfer simulations, we investigate if quasars are capable of substantially changing the size and morphology of the H ii regions they are born in. We choose stellar and quasar luminosities in a way that is favourable to seeing such an effect. We find that even the most luminous of our quasar models is not able to increase the size of its native H ii region substantially beyond those of large H ii regions produced by clustered stellar sources alone. However, the quasar H ii region is found to be more spherical. We next investigate the prospects of detecting such H ii regions in the redshifted 21-cm data from the Low Frequency Array (LOFAR) by means of a matched filter technique. We find that H ii regions with radii similar to 25 comoving Mpc or larger should have a sufficiently high detection probability for 1200 h of integration time. Although the matched filter can in principle distinguish between more and less spherical regions, we find that when including realistic system noise this distinction can no longer be made. The strong foregrounds are found not to pose a problem for the matched filter technique. We also demonstrate that when the quasar position is known, the redshifted 21-cm data can still be used to set upper limits on the ionizing photon rate of the quasar. If both the quasar position and its luminosity are known, the redshifted 21-cm data can set new constraints on quasar lifetimes.
  •  
7.
  • Friedrich, Martina M., 1982-, et al. (författare)
  • Prospects of observing a quasar HII region during the Epoch ofReionization with redshifted 21cm
  • Ingår i: Monthly notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966.
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a study of the impact of a bright quasar on the redshifted 21cm signal during theEpoch of Reionization (EoR). Using three different cosmological radiative transfer simula-tions, we investigate if quasars are capable of substantially changing the size and morphologyof the H II regions they are born in. We choose stellar and quasar luminosities in a way that isfavourable to seeing such an effect. We find that even the most luminous of our quasar modelsis not able to increase the size of its native H II region substantially beyond those of largeH II regions produced by clustered stellar sources alone. However, the quasar H II region isfound to be more spherical. We next investigate the prospects of detecting such H II regionsin the redshifted 21cm data from the Low Frequency Array (LOFAR) by means of a matchedfilter technique. We find that H II regions with radii ∼ 25 comoving Mpc or larger shouldhave a sufficiently high detection probability for 1200 hours of integration time. Although thematched filter can in principle distinguish between more and less spherical regions, we findthat when including realistic system noise this distinction can no longer be made. The strongforegrounds are found not to pose a problem for the matched filter technique. We also demon-strate that when the quasar position is known, the redshifted 21cm data can still be used toset upper limits on the ionizing photon rate of the quasar. If both the quasar position and itsluminosity are known, the redshifted 21 cm data can set new constrains on quasar lifetimes.
  •  
8.
  • Jensen, Hannes, et al. (författare)
  • Probing reionization with LOFAR using 21-cm redshift space distortions
  • 2013
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 435:1, s. 460-474
  • Tidskriftsartikel (refereegranskat)abstract
    • One of the most promising ways to study the epoch of reionization (EoR) is through radio observations of the redshifted 21-cm line emission from neutral hydrogen. These observations are complicated by the fact that the mapping of redshifts to line-of-sight positions is distorted by the peculiar velocities of the gas. Such distortions can be a source of error if they are not properly understood, but they also encode information about cosmology and astrophysics. We study the effects of redshift space distortions on the power spectrum of 21-cm radiation from the EoR using large-scale N-body and radiative transfer simulations. We quantify the anisotropy introduced in the 21-cm power spectrum by redshift space distortions and show how it evolves as reionization progresses and how it relates to the underlying physics. We go on to study the effects of redshift space distortions on LOFAR observations, taking instrument noise and foreground subtraction into account. We find that LOFAR should be able to directly observe the power spectrum anisotropy due to redshift space distortions at spatial scales around k similar to 0.1 Mpc(-1) after greater than or similar to 1000 h of integration time. At larger scales, sample errors become a limiting factor, while at smaller scales detector noise and foregrounds make the extraction of the signal problematic. Finally, we show how the astrophysical information contained in the evolution of the anisotropy of the 21-cm power spectrum can be extracted from LOFAR observations, and how it can be used to distinguish between different reionization scenarios.
  •  
9.
  • Majumdar, Suman, et al. (författare)
  • Effects of the sources of reionization on 21-cm redshift-space distortions
  • 2016
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 456:2, s. 2080-2094
  • Tidskriftsartikel (refereegranskat)abstract
    • The observed 21 cm signal from the epoch of reionization will be distorted along the line of sight by the peculiar velocities of matter particles. These redshift-space distortions will affect the contrast in the signal and will also make it anisotropic. This anisotropy contains information about the cross-correlation between the matter density field and the neutral hydrogen field, and could thus potentially be used to extract information about the sources of reionization. In this paper, we study a collection of simulated reionization scenarios assuming different models for the sources of reionization. We show that the 21 cm anisotropy is best measured by the quadrupole moment of the power spectrum. We find that, unless the properties of the reionization sources are extreme in some way, the quadrupole moment evolves very predictably as a function of global neutral fraction. This predictability implies that redshift-space distortions are not a very sensitive tool for distinguishing between reionization sources. However, the quadrupole moment can be used as a model-independent probe for constraining the reionization history. We show that such measurements can be done to some extent by first-generation instruments such as LOFAR, while the SKA should be able to measure the reionization history using the quadrupole moment of the power spectrum to great accuracy.
  •  
10.
  • Majumdar, Suman, et al. (författare)
  • On the use of seminumerical simulations in predicting the 21-cm signal from the epoch of reionization
  • 2014
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 443:4, s. 2843-2861
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a detailed comparison of three different simulations of the epoch of reionization (EoR). The radiative transfer simulation (C-2-RAY) among them is our benchmark. Radiative transfer codes can produce realistic results, but are computationally expensive. We compare it with two seminumerical techniques: one using the same haloes as C-2-RAY as its sources (Sem-Num), and one using a conditional Press-Schechter scheme (CPS+GS). These are vastly more computationally efficient than C-2-RAY, but use more simplistic physical assumptions. We evaluate these simulations in terms of their ability to reproduce the history and morphology of reionization. We find that both Sem-Num and CPS+GS can produce an ionization history and morphology that is very close to C-2-RAY, with Sem-Num performing slightly better compared to CPS+GS. We also study different redshift-space observables of the 21-cm signal from EoR: the variance, power spectrum and its various angular multipole moments. We find that both seminumerical models perform reasonably well in predicting these observables at length scales relevant for present and future experiments. However, Sem-Num performs slightly better than CPS+GS in producing the reionization history, which is necessary for interpreting the future observations. The CPS+GS scheme, however, has the advantage that it is not restricted by the mass resolution of the dark matter density field.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy