SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Daurer Benedikt J) "

Sökning: WFRF:(Daurer Benedikt J)

  • Resultat 1-10 av 21
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kurta, Ruslan P., et al. (författare)
  • Correlations in Scattered X-Ray Laser Pulses Reveal Nanoscale Structural Features of Viruses
  • 2017
  • Ingår i: Physical Review Letters. - : American Physical Society. - 0031-9007 .- 1079-7114. ; 119:15
  • Tidskriftsartikel (refereegranskat)abstract
    • We use extremely bright and ultrashort pulses from an x-ray free-electron laser (XFEL) to measure correlations in x rays scattered from individual bioparticles. This allows us to go beyond the traditional crystallography and single-particle imaging approaches for structure investigations. We employ angular correlations to recover the three-dimensional (3D) structure of nanoscale viruses from x-ray diffraction data measured at the Linac Coherent Light Source. Correlations provide us with a comprehensive structural fingerprint of a 3D virus, which we use both for model-based and ab initio structure recovery. The analyses reveal a clear indication that the structure of the viruses deviates from the expected perfect icosahedral symmetry. Our results anticipate exciting opportunities for XFEL studies of the structure and dynamics of nanoscale objects by means of angular correlations.
  •  
2.
  • Li, Haoyuan, et al. (författare)
  • Diffraction data from aerosolized Coliphage PR772 virus particles imaged with the Linac Coherent Light Source
  • 2020
  • Ingår i: Scientific Data. - : NATURE RESEARCH. - 2052-4463. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Single Particle Imaging (SPI) with intense coherent X-ray pulses from X-ray free-electron lasers (XFELs) has the potential to produce molecular structures without the need for crystallization or freezing. Here we present a dataset of 285,944 diffraction patterns from aerosolized Coliphage PR772 virus particles injected into the femtosecond X-ray pulses of the Linac Coherent Light Source (LCLS). Additional exposures with background information are also deposited. The diffraction data were collected at the Atomic, Molecular and Optical Science Instrument (AMO) of the LCLS in 4 experimental beam times during a period of four years. The photon energy was either 1.2 or 1.7keV and the pulse energy was between 2 and 4 mJ in a focal spot of about 1.3 mu m x 1.7 mu m full width at half maximum (FWHM). The X-ray laser pulses captured the particles in random orientations. The data offer insight into aerosolised virus particles in the gas phase, contain information relevant to improving experimental parameters, and provide a basis for developing algorithms for image analysis and reconstruction.
  •  
3.
  • Munke, Anna, et al. (författare)
  • Data Descriptor : Coherent diffraction of single Rice Dwarf virus particles using hard X-rays at the Linac Coherent Light Source
  • 2016
  • Ingår i: Scientific Data. - : Nature Publishing Group. - 2052-4463. ; 3
  • Tidskriftsartikel (refereegranskat)abstract
    • Single particle diffractive imaging data from Rice Dwarf Virus (RDV) were recorded using the Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS). RDV was chosen as it is a wellcharacterized model system, useful for proof-of-principle experiments, system optimization and algorithm development. RDV, an icosahedral virus of about 70 nm in diameter, was aerosolized and injected into the approximately 0.1 mu m diameter focused hard X-ray beam at the CXI instrument of LCLS. Diffraction patterns from RDV with signal to 5.9 angstrom ngstrom were recorded. The diffraction data are available through the Coherent X-ray Imaging Data Bank (CXIDB) as a resource for algorithm development, the contents of which are described here.
  •  
4.
  • Ayyer, Kartik, et al. (författare)
  • 3D diffractive imaging of nanoparticle ensembles using an x-ray laser
  • 2021
  • Ingår i: Optica. - : Optical Society of America. - 2334-2536. ; 8:1, s. 15-23
  • Tidskriftsartikel (refereegranskat)abstract
    • Single particle imaging at x-ray free electron lasers (XFELs) has the potential to determine the structure and dynamics of single biomolecules at room temperature. Two major hurdles have prevented this potential from being reached, namely, the collection of sufficient high-quality diffraction patterns and robust computational purification to overcome structural heterogeneity. We report the breaking of both of these barriers using gold nanoparticle test samples, recording around 10 million diffraction patterns at the European XFEL and structurally and orientationally sorting the patterns to obtain better than 3-nm-resolution 3D reconstructions for each of four samples. With these new developments, integrating advancements in x-ray sources, fast-framing detectors, efficient sample delivery, and data analysis algorithms, we illuminate the path towards sub-nano meter biomolecular imaging. The methods developed here can also be extended to characterize ensembles that are inherently diverse to obtain their full structural landscape. Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License.
  •  
5.
  • Ho, Phay J., et al. (författare)
  • The role of transient resonances for ultra-fast imaging of single sucrose nanoclusters
  • 2020
  • Ingår i: Nature Communications. - : NATURE PUBLISHING GROUP. - 2041-1723. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Intense x-ray free-electron laser (XFEL) pulses hold great promise for imaging function in nanoscale and biological systems with atomic resolution. So far, however, the spatial resolution obtained from single shot experiments lags averaging static experiments. Here we report on a combined computational and experimental study about ultrafast diffractive imaging of sucrose clusters which are benchmark organic samples. Our theoretical model matches the experimental data from the water window to the keV x-ray regime. The large-scale dynamic scattering calculations reveal that transient phenomena driven by non-linear x-ray interaction are decisive for ultrafast imaging applications. Our study illuminates the complex interplay of the imaging process with the rapidly changing transient electronic structures in XFEL experiments and shows how computational models allow optimization of the parameters for ultrafast imaging experiments. X-ray free electron lasers provide high photon flux to explore single particle diffraction imaging of biological samples. Here the authors present dynamic electronic structure calculations and benchmark them to single-particle XFEL diffraction data of sucrose clusters to predict optimal single-shot imaging conditions.
  •  
6.
  • Parkinson, Dilworth Y., et al. (författare)
  • Real-Time Data-Intensive Computing
  • 2016
  • Ingår i: Proceedings Of The 12Th International Conference On Synchrotron Radiation Instrumentation (SRI2015). - : Author(s). - 9780735413986
  • Konferensbidrag (refereegranskat)abstract
    • Today users visit synchrotrons as sources of understanding and discovery-not as sources of just light, and not as sources of data. To achieve this, the synchrotron facilities frequently provide not just light but often the entire end station and increasingly, advanced computational facilities that can reduce terabytes of data into a form that can reveal a new key insight. The Advanced Light Source (ALS) has partnered with high performance computing, fast networking, and applied mathematics groups to create a "super-facility", giving users simultaneous access to the experimental, computational, and algorithmic resources to make this possible. This combination forms an efficient closed loop, where data-despite its high rate and volume-is transferred and processed immediately and automatically on appropriate computing resources, and results are extracted, visualized, and presented to users or to the experimental control system, both to provide immediate insight and to guide decisions about subsequent experiments during beamtime. We will describe our work at the ALS ptychography, scattering, micro-diffraction, and micro-tomography beamlines.
  •  
7.
  • Sobolev, Egor, et al. (författare)
  • Megahertz single-particle imaging at the European XFEL
  • 2020
  • Ingår i: Communications Physics. - : Springer Science and Business Media LLC. - 2399-3650. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The emergence of high repetition-rate X-ray free-electron lasers (XFELs) powered by superconducting accelerator technology enables the measurement of significantly more experimental data per day than was previously possible. The European XFEL is expected to provide 27,000 pulses per second, over two orders of magnitude more than any other XFEL. The increased pulse rate is a key enabling factor for single-particle X-ray diffractive imaging, which relies on averaging the weak diffraction signal from single biological particles. Taking full advantage of this new capability requires that all experimental steps, from sample preparation and delivery to the acquisition of diffraction patterns, are compatible with the increased pulse repetition rate. Here, we show that single-particle imaging can be performed using X-ray pulses at megahertz repetition rates. The results obtained pave the way towards exploiting high repetition-rate X-ray free-electron lasers for single-particle imaging at their full repetition rate.
  •  
8.
  • Zhuang, Yulong, et al. (författare)
  • Unsupervised learning approaches to characterizing heterogeneous samples using X-ray single-particle imaging
  • 2022
  • Ingår i: IUCrJ. - : International Union of Crystallography (IUCr). - 2052-2525. ; 9, s. 204-214
  • Tidskriftsartikel (refereegranskat)abstract
    • One of the outstanding analytical problems in X-ray single-particle imaging (SPI) is the classification of structural heterogeneity, which is especially difficult given the low signal-to-noise ratios of individual patterns and the fact that even identical objects can yield patterns that vary greatly when orientation is taken into consideration. Proposed here are two methods which explicitly account for this orientation-induced variation and can robustly determine the structural landscape of a sample ensemble. The first, termed common-line principal component analysis (PCA), provides a rough classification which is essentially parameter free and can be run automatically on any SPI dataset. The second method, utilizing variation auto-encoders (VAEs), can generate 3D structures of the objects at any point in the structural landscape. Both these methods are implemented in combination with the noise-tolerant expand-maximizecompress (EMC) algorithm and its utility is demonstrated by applying it to an experimental dataset from gold nanoparticles with only a few thousand photons per pattern. Both discrete structural classes and continuous deformations are recovered. These developments diverge from previous approaches of extracting reproducible subsets of patterns from a dataset and open up the possibility of moving beyond the study of homogeneous sample sets to addressing open questions on topics such as nanocrystal growth and dynamics, as well as phase transitions which have not been externally triggered.
  •  
9.
  • Bielecki, Johan, 1982, et al. (författare)
  • Electrospray sample injection for single-particle imaging with x-ray lasers
  • 2019
  • Ingår i: Science advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 5:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The possibility of imaging single proteins constitutes an exciting challenge for x-ray lasers. Despite encouraging results on large particles, imaging small particles has proven to be difficult for two reasons: not quite high enough pulse intensity from currently available x-ray lasers and, as we demonstrate here, contamination of the aerosolized molecules by nonvolatile contaminants in the solution. The amount of contamination on the sample depends on the initial droplet size during aerosolization. Here, we show that, with our electrospray injector, we can decrease the size of aerosol droplets and demonstrate virtually contaminant-free sample delivery of organelles, small virions, and proteins. The results presented here, together with the increased performance of next-generation x-ray lasers, constitute an important stepping stone toward the ultimate goal of protein structure determination from imaging at room temperature and high temporal resolution.
  •  
10.
  • Daurer, Benedikt J. (författare)
  • Algorithms for Coherent Diffractive Imaging with X-ray Lasers
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Coherent diffractive imaging (CDI) has become a very popular technique over the past two decades. CDI is a "lensless" imaging method which replaces the objective lens of a conventional microscope by a computational image reconstruction procedure. Its increase in popularity came together with the development of X-ray free-electron lasers (XFELs) which produce extremely bright and coherent X-rays. By facilitating these unique properties, CDI enables structure determination of non-crystalline samples at nanometre resolution and has many applications in structural biology, material science and X-ray optics among others. This work focuses on two specific CDI techniques, flash X-ray diffractive imaging (FXI) on biological samples and X-ray ptychography.While the first FXI demonstrations using soft X-rays have been quite promising, they also revealed remaining technical challenges. FXI becomes even more demanding when approaching shorter wavelengths to allow subnanometre resolution imaging. We described one of the first FXI experiments using hard X-rays and characterized the most critical components of such an experiment, namely the properties of X-ray focus, sample delivery and detectors. Based on our findings, we discussed experimental and computational strategies for FXI to overcome its current difficulties and reach its full potential. We deposited the data in the Coherent X-ray Database (CXIDB) and made our data analysis code available in a public repository. We developed algorithms targeted towards the needs of FXI experiments and implemented a software package which enables the analysis of diffraction data in real time.X-ray ptychography has developed into a very useful tool for quantitative imaging of complex materials and has found applications in many areas. However, it involves a computational reconstruction step which can be slow. Therefore, we developed a fast GPU-based ptychographic solver and combined it with a framework for real-time data processing which already starts the ptychographic reconstruction process while data is still being collected. This provides immediate feedback to the user and allows high-throughput ptychographic imaging.Finally, we have used ptychographic imaging as a method to study the wavefront of a focused XFEL beam under typical FXI conditions. We are convinced that this work on developing strategies and algorithms for FXI and ptychography is a valuable contribution to the development of coherent diffractive imaging. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 21
Typ av publikation
tidskriftsartikel (18)
annan publikation (1)
konferensbidrag (1)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (19)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Daurer, Benedikt J. (20)
Maia, Filipe R. N. C ... (15)
Bielecki, Johan (13)
Svenda, Martin (11)
Nettelblad, Carl (10)
Hajdu, Janos (9)
visa fler...
Barty, Anton (9)
Sellberg, Jonas A. (9)
Timneanu, Nicusor (8)
Loh, N. Duane (8)
Hantke, Max F. (8)
Mancuso, Adrian P. (7)
Chapman, Henry N. (7)
Kirian, Richard A. (7)
Ayyer, Kartik (7)
Reddy, Hemanth K. N. (7)
Westphal, Daniel (7)
van der Schot, Gijs (7)
Mühlig, Kerstin (7)
Ekeberg, Tomas (6)
Xavier, P. Lourdu (6)
Vartanyants, Ivan A. (6)
Larsson, Daniel S. D ... (6)
Okamoto, Kenta (6)
Aquila, Andrew (5)
Rose, Max (5)
Kim, Yoonhee (5)
Awel, Salah (5)
Ekeberg, Tomas, 1983 ... (5)
Maia, Filipe (5)
Hasse, Dirk (5)
Munke, Anna (5)
Pietrini, Alberto (5)
Bucher, Maximilian (5)
Hart, Philip (4)
Williams, Garth J. (4)
Ulmer, Anatoli (4)
Hantke, Max (4)
Seibert, Marvin (4)
Bostedt, Christoph (4)
Spence, John C. H. (4)
DeMirci, Hasan (4)
Schwander, Peter (4)
Yoon, Chun Hong (4)
Hogue, Brenda G. (4)
Gorkhover, Tais (4)
Williams, Garth (4)
Berntsen, Peter (4)
Hosseinizadeh, Ahmad (4)
Ourmazd, Abbas (4)
visa färre...
Lärosäte
Uppsala universitet (21)
Kungliga Tekniska Högskolan (11)
Chalmers tekniska högskola (3)
Språk
Engelska (21)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (21)
Medicin och hälsovetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy