SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dawyndt Peter) "

Sökning: WFRF:(Dawyndt Peter)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Field, Dawn, et al. (författare)
  • The minimum information about a genome sequence (MIGS) specification.
  • 2008
  • Ingår i: Nature biotechnology. - : Springer Science and Business Media LLC. - 1546-1696 .- 1087-0156. ; 26:5, s. 541-7
  • Tidskriftsartikel (refereegranskat)abstract
    • With the quantity of genomic data increasing at an exponential rate, it is imperative that these data be captured electronically, in a standard format. Standardization activities must proceed within the auspices of open-access and international working bodies. To tackle the issues surrounding the development of better descriptions of genomic investigations, we have formed the Genomic Standards Consortium (GSC). Here, we introduce the minimum information about a genome sequence (MIGS) specification with the intent of promoting participation in its development and discussing the resources that will be required to develop improved mechanisms of metadata capture and exchange. As part of its wider goals, the GSC also supports improving the 'transparency' of the information contained in existing genomic databases.
  •  
2.
  • Kyrpides, Nikos C, et al. (författare)
  • Genomic encyclopedia of bacteria and archaea: sequencing a myriad of type strains.
  • 2014
  • Ingår i: PLoS biology. - : Public Library of Science (PLoS). - 1545-7885. ; 12:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Microbes hold the key to life. They hold the secrets to our past (as the descendants of the earliest forms of life) and the prospects for our future (as we mine their genes for solutions to some of the planet's most pressing problems, from global warming to antibiotic resistance). However, the piecemeal approach that has defined efforts to study microbial genetic diversity for over 20 years and in over 30,000 genome projects risks squandering that promise. These efforts have covered less than 20% of the diversity of the cultured archaeal and bacterial species, which represent just 15% of the overall known prokaryotic diversity. Here we call for the funding of a systematic effort to produce a comprehensive genomic catalog of all cultured Bacteria and Archaea by sequencing, where available, the type strain of each species with a validly published name (currently∼11,000). This effort will provide an unprecedented level of coverage of our planet's genetic diversity, allow for the large-scale discovery of novel genes and functions, and lead to an improved understanding of microbial evolution and function in the environment.
  •  
3.
  • Austin, Brian, et al. (författare)
  • Sliding window discretization : A new method for multiple band matching of bacterial genotyping fingerprints
  • 2004
  • Ingår i: Bulletin of Mathematical Biology. - : Springer Science and Business Media LLC. - 0092-8240 .- 1522-9602. ; 66:6, s. 1575-1596
  • Tidskriftsartikel (refereegranskat)abstract
    • Microbiologists have traditionally applied hierarchical clustering algorithms as their mathematical tool of choice to unravel the taxonomic relationships between micro-organisms. However, the interpretation of such hierarchical classifications suffers from being subjective, in that a variety of ad hoc choices must be made during their construction. On the other hand, the application of more profound and objective mathematical methods - such as the minimization of stochastic complexity - for the classification of bacterial genotyping fingerprints data is hampered by the prerequisite that such methods only act upon vectorized data. In this paper we introduce a new method, coined sliding window discretization, for the transformation of genotypic fingerprint patterns into binary vector format. In the context of an extensive amplified fragment length polymorphism (AFLP) data set of 507 strains from the Vibrionaceae family that has previously been analysed, we demonstrate by comparison with a number of other discretization methods that this new discretization method results in minimal loss of the original information content captured in the banding patterns. Finally, we investigate the implications of the different discretization methods on the classification of bacterial genotyping fingerprints by minimization of stochastic complexity, as it is implemented in the BinClass software package for probabilistic clustering of binary vectors. The new taxonomic insights learned from the resulting classification of the AFLP patterns will prove the value of combining sliding window discretization with minimization of stochastic complexity, as an alternative classification algorithm for bacterial genotyping fingerprints.
  •  
4.
  • Dawyndt, Peter, et al. (författare)
  • A complementary approach to systematics
  • 2005
  • Ingår i: Microbiology Today. - 1464-0570. ; :February, s. 38-38
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
5.
  • Koski, Timo, et al. (författare)
  • Application of sliding-window discretization and minimization of stochastic complexity for the analysis of fAFLP genotyping fingerprint patterns of Vibrionaceae
  • 2005
  • Ingår i: International Journal of Systematic and Evolutionary Microbiology. - : Microbiology Society. - 1466-5026 .- 1466-5034. ; 55, s. 57-66
  • Tidskriftsartikel (refereegranskat)abstract
    • Minimization of stochastic complexity (SC) was used as a method for classification of genotypic fingerprints. The method was applied to fluorescent amplified fragment length polymorphism (fAFLP) fingerprint patterns of 507 Vibrionaceae representatives. As the current BinClass implementation of the optimization algorithm for classification only works on binary vectors, the original fingerprints were discretized in a preliminary step using the sliding-window band-matching method, in order to maximally preserve the information content of the original band patterns. The novel classification generated using the BinClass software package was subjected to an in-depth comparison with a hierarchical classification of the same dataset, in order to acknowledge the applicability of the new classification method as a more objective algorithm for the classification of genotyping fingerprint patterns. Recent DNA-DNA hybridization and 16S rRNA gene sequence experiments proved that the classification based on SC-minimization forms separate clusters that contain the fAFLP patterns for all representatives of the species Enterovibrio norvegicus, Vibrio fortis, Vibrio diazotrophicus or Vibrio campbellii, while previous hierarchical cluster analysis had suggested more heterogeneity within the fAFLP patterns by splitting the representatives of the above-mentioned species into multiple distant clusters. As a result, the new classification methodology has highlighted some previously unseen relationships within the biodiversity of the family Vibrionaceae.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy